

AD-A259 211

SCALING FOR SHOCK RESPONSE OF EQUIPMENT IN DIFFERENT SUBMARINES

N00014-91-J-4059

Patrick F. Cunniff and George J. O'Hara

Technical Report No.92-2

December 1992

Approved for public release

Distribution Unlimited

92 12 11 004

UNIVERSITY OF MARYLAND AT COLLEGE PARK

DEPARTMENT OF MECHANICAL ENGINEERING

December 9, 1992

Defense Technical Information Center Building 5, Cameron Station Alexandria, VA 22304-6145

Dear Sir:

Two copies of a new technical report "Scaling for Shock Response of Equipment in Different Submarines" by George O'Hara and me are enlosed for your information. This work was performed under ONR Grant No. N00014-91-J-4059.

Do contact me on (301)405-5256 if you have any questions.

Sincerely

Patrick F. Cunniff

Professor

TABLE OF CONTENTS

		Page
ABSTRACT		1
BACKGROUND		1
LINEAR SCALING		2
CHARGE WEIGHT SCALING		4
EQUIPMENT WEIGHT SCALING		5
EQUIPMENT FREQUENCY SCALING		6
GENERAL SCALING RULES Same Hull General Linear Scaling Law Linearly Scaled Hull, Same Equipment and Charge Weight Linearly Scaled Hull, Different Equipment and Charge We	eight	7
PARABOLIC SCALING The Intercept Rule Same Hull Different Hull		9
RESULTS Linear Scaling A Word of Caution Parabolic Scaling		13
SUMMARY AND CONCLUSIONS		16
ACKNOWLEDGEMENTS		17
REFERENCES		17
APPENDIX A - Summary of Data for Model B	Accesion For	
APPENDIX B - Summary of Data for Model F	NTIS CRA&I DTIC TAB Unannounced Justification	X
	By Dist. ibution /	
Statement A per telecon Phillip Abraham ONR/Code 1132 Arlington, VA 22217-5000	Availability Cod	
NWW 12/15/92	A-/ Special	
DITIC OTTAINTY INSPECTED L		

DIIC QUALITY INSPECTED L'

ABSTRACT

This report presents scaling rules developed to predict the response of submarine equipment subjected to underwater chemical The computer was used as a surrogate for shock tests by employing the University of Maryland HULL code. A simplified model of a hull section was used to contain a frame-mounted single-degree of freedom equipment. A general scaling rule has been developed to handle the spread in the shock response attributable to the charge size, equipment weight, and equipment In this report the shock response is considered to be the absolute maximum acceleration of the equipment mass as a function of the shock factor (square root of the energy flux density) for a given charge weight. The report also examines those cases where a new hull is derived from an original hull by the linear scaling law. The solution of the shock response is well known when the internal equipment has also been linearly A new general scaling rule is developed for those cases scaled. when the equipment is not linearly scaled, i.e., the equipment and charge weight used in the original hull remains unchanged when installed in the linearly-scaled hull or a completely different equipment and charge weight are used with the new hull. It is shown how this new general scaling rule can be used for either linear or parabolic scaling. It is emphasized that the test sections were short and devoid of typical equipment present in a real compartment. The results, nevertheless, provide trends and ratios in shock design values, not necessarily absolute The approach taken in developing these scaling design numbers. rules could be useful for enhancing field data that may exist for a given class of boat, so as to allow greater usage of these data for different equipment subject to a variety of charge weights, attack geometries, and other boats.

BACKGROUND

Previous analysis and studies at the University of Maryland and elsewhere have illustrated the difficulty in relating the equipment response at different charge weights for the same shock factor. An early study [1] showed a promising scaling rule that appears valid over a wide range of charge sizes for the same hull and equipment. Another report [2] examined how far this range might be extended for both lower charge weights and higher charge weights; compared linear and parabolic least square fits of the data which are in the form of equipment peak acceleration response versus shock factor; introduced new scaling rules for equipment weight and equipment frequency for single-degree of freedom equipment; and pointed out the hazards of extrapolating over a wide range of shock factor using a limited range of data.

The current report examines in greater detail the range of application of the these previously developed scaling rules for new and more comprehensive response data so as to either confirm

or set new bounds on the charge weights, equipment weights, and equipment frequencies. Linear scaling between different hulls is also examined, where in general, the hull geometry, equipment weight and frequency, and charge size are all scaled by a linear factor. A new scaling rule is also developed for the case where the hull geometry is scaled linearly but the equipment either remains unchanged or a completely different equipment is installed in the new hull.

Model Hulls

Two different model submarine hulls were employed in the study, each designed for approximately the same depth. Models B and F represent a 33-foot diameter hull and a 40.29-foot diameter The diameters, geometrical layout, and hull, respectively. scantlings for each hull are shown in Fig.1. An earlier study [1] demonstrated that a five frame model is adequate for the purpose of this kind of investigation. The University of Maryland "HULL" code, which has been described elsewhere [3], is the principal means used in the creation of the mathematical This code calculates the time response of the equipment models. and their base supports internal to a submarine-like ringstiffened pressure hull when the hull is subjected to an underwater chemical explosion. The pressure hull, the underwater explosion, and the fluid-structure interaction are all modelled with sufficient detail to provide a realistic environment for the study of shock excited internal equipment. This resulted in models B and F each having more than 1,100 degrees of freedom.

Equipment Response

The absolute acceleration of the equipment mass as a function of the shock factor for a given charge weight is the measure of response and its variation is examined to establish trends that may affect equipment design. Figure 2 is a schematic of the shot geometry where the depth of the center line of the hull and the charge are always held at 60 feet so that the cavitation pressure remains the same in all cases. Neutral buoyancy is always maintained.

The measure of the shock intensity used herein is the square root of the acoustic approximation of the energy flux density, or shock factor SF, where

$$SF = \frac{\sqrt{Q}}{R} \tag{1}$$

as shown by Cole [4]; Q is the charge weight in pounds of TNT, and R is the distance in feet between the hull and the charge.

LINEAR SCALING

Linear scaling is the process whereby a new hull is sized from an existing hull by the linear ratio of the hull diameters.

Thus, the hull thickness and all other scantlings are scaled by the same linear scaling factor. This approach assumes a thin-walled cylinder under uniform pressure, whereby the tangential stress and the longitudinal stress are both proportional to the diameter of the cylinder and inversely proportional to the thickness of the cylinder. Consequently, if d is the diameter of the prototype hull, and the diameter D of the scaled hull, then

$$D=Ld (2)$$

where L is the linear scaling factor. This scaling factor is also used to scale the charge size, standoff distance, and the equipment from the prototype hull to the scaled hull.

The motion of an equipment that is created by some excitation requires the linear scaling factor to be extended to time and the kinematic descriptors of the response. Thus, if t is time for the motion of the equipment in the original hull, then the time T for the new equipment in the scaled hull is

$$T=Lt$$
 (3)

The relationship between the existing velocity v, acceleration a, and frequency f and their corresponding quantities in the scaled hull, expressed in upper-case notation, are

$$V=V$$
 (4)

$$A = \frac{a}{L} \tag{5}$$

$$F = \frac{f}{L} \tag{6}$$

The linear scaling relationship between the prototype's chemical charge weight q and shock factor sf and the corresponding scaled quantities are

$$Q=L^3 q \tag{7}$$

$$SF = \sqrt{L}Sf \tag{8}$$

The general linear scaling law was applied to model B which formed the prototype hull containing a 20-kip, 20-Hz equipment as

shown in Fig.1(a). The velocity of the equipment relative to its moving base point was obtained for a 1740-lb charge weight and a shock factor of 0.15. Two linearly scaled models were constructed for a 33-foot diameter boat, called the SBS model, and for a 40-foot diameter boat, called the LBS model. The equipment weight, equipment frequency, charge weight and shock factor for the SBS model were calculated as 9.782 kips, 25.385 Hz, 851 lb and 0.133, respectively, and the corresponding values for the LBS model were 35.618 kips, 16.500 Hz, 3098.8 lb and 0.165. An overlay of the relative velocity response of each equipment in models B, SBS, and LBS, is shown in Fig.3. Note that eq.(3) was used to scale time for the response of the SBS and SBL models. The closeness of fit of these responses supports the validity of the general linear scaling law as well as the adequacy of the performance of the HULL code.

CHARGE WEIGHT SCALING

Consider an equipment attached to a given hull as shown in Fig.1 subject to a fixed charge weight and a varying shock factor. Figure 4 is a plot of two typical linear least square fits through the equipment response. As observed earlier [1], the acoustic pressure appears to be the key variable that affects the equipment response. A scaling rule was constructed by dividing the slope of the line representing the least squares fit of the data for the charge weight Q_a by the acoustic pressure, where the acoustic pressure is defined as $Q_a^{3/8}/R$. Thus,

$$S_{a} \frac{R}{Q_{a}^{(3/8)}} = S_{a} \frac{Q_{a}^{(1/8)}}{SF}$$
 (9)

where s_a is the slope of the least square line for charge weight Q_a . For equal shock factor, the slope s_b for charge weight Q_b , is related to the slope for charge weight Q_a as

$$S_b = S_a \left(\frac{Q_a}{Q_b} \right)^{(1/8)} \tag{10}$$

This scaling rule for charge weight was tested in an earlier study [2]. For example, consider Fig.5 which shows the response data plotted for model B with a 20-kip, 20-Hz equipment mounted to the hull frame. Straight lines join the data points for charge weights ranging from 600 lb to 3,625 lb. Figure 6 shows the linear least square fit for each charge weight data in Fig.5. Note that the symbols are used to identify each line more clearly and, consequently, are not data points. Figure 7 shows all of the slopes scaled to the 1,160-lb charge by the scaling rule of eq.(10).

Although an examination was made to alter the exponent in eq.(10) to narrow the range of the scaled slopes even further, the results proved that there was little to be gained by deviating from a rule based on physical reasoning. Consequently, after reviewing all of the data it was concluded that eq.(10) would serve as a very good predictor for charge weights ranging from 600-lb to 3,625-lb of TNT.

The response data for model B, which is the prototype, and model B's scaled counterparts are summarized for this range of charge weights in Appendix A. The notation SB and LB refer to a linearly scaled hull with the originally installed equipment in model B, while the notation SBS and LBS refer to the cases where the general linear scaling law was used as presented in the previous section. L=26/33 for the SB and SBS models, and L=40/33 for the LB and LBS models. Similar data are presented for model F in Appendix B, where L=30.83/40.3 for the SF and SFS models, and L=52.4/40.3 for the LF and LFS models. These data were utilized in developing the additional scaling rules that follow.

EQUIPMENT WEIGHT SCALING

Having established a scaling rule for the response slopes for different charge weights for a given hull as expressed by eq.(10), the next step in the analysis was to examine how these response slopes might be modified for different equipment weights and equipment fixed base frequencies. Consider the following general scaling rule to find the response slope s_b for equipment weight W_b knowing the slope s_a for equipment weight W_a:

$$S_b = S_a \left(\frac{W_a}{W_b} \right)^n \tag{11}$$

An earlier investigation of this rule [2] reasoned that because two cubes of different weight scale by a factor of 1/3, and the response data are plotted as a function of the square root of the charge weight as shown in eq.(1), then n = 1/6 might prove to be a good estimate for the exponent n. This scaling rule was examined in the current study over a wide range of conditions for models B and F. Consider the data for model B in Table 1. The equipment weight ranged from 15 kips to 35 kips, while the equipment frequency was held to either 20 Hz or 30 Hz. Three charge weights and five shock factors ranging from 0.15 to 0.75 in 0.15 increments were used. The data in the table are the actual peak acceleration response and the slope of the least square fit through the response data for the given charge weight. Table 2 contains the exponent n in eq.(11) that would be required to satisfy the actual slopes obtained from the computer results

in Table 1 for all combinations of the weight ratios. In the case of the 20-Hz equipment, an overall average of the data for the three charge weights produced n=0.1648, and n=0.2417 for the 30-Hz equipment.

Further examination of the data revealed that eq.(11) was relatively insensitive to the exponent n. For example, eq.(11) was tested against the data in Table 1 by using n = 1/6 and the 25-kip equipment as the reference weight. The results are summarized in Table 3. As an example of the calculations, refer to the data in Table 1 where the response slope equals 54.0409 for the 15-kip, 20-Hz equipment subject to an 1160-lb charge weight. Thus, $s_a = 54.0409$, $W_a = 15$ kips, and $W_b = 25$ kips. Therefore,

$$s_b = 54.0409 \left(\frac{15}{25}\right)^{\left(\frac{1}{6}\right)} = 49.6304$$
 (12)

This value is found in Table 3 and the percent error is computed between this scaled slope and the actual slope of 49.7273, yielding an error of 0.19%. The largest error for the range of parameters is 4.27%.

Similar results for model F are shown in Tables 4-6 where the highest error shown in Table 6 for n=1/6 was 2.22%, again suggesting the relative insensitivity of eq.(11) to changes in the exponent n. Consequently, the exponent n=1/6 was judged satisfactory for equipment ranging from 15 kips to 35 kips, and frequencies in the neighborhood of 20 Hz and 30 Hz.

EQUIPMENT FREQUENCY SCALING

A scaling rule for the equipment fixed base natural frequency was developed in a similar way. Consider the general form of the rule as follows:

$$S_b = S_a \left(\frac{f_b}{f_a}\right)^n \tag{13}$$

where

 s_a = reference slope for a given charge weight, equipment weight, and equipment frequency f_a ;

 s_b = slope for the same charge weight, equipment weight, but the equipment frequency is now f_b .

Table 7 summarizes the response data for model B subject to three charge weights, where the equipment frequency ranges from 15 Hz to 35 Hz in increments of 5-Hz, and the equipment weight ranges from 15 kips to 25 kips in 5-kip increments. The required values of n in eq.(13) that satisfy these data are summarized in Table 8 for all combinations of the frequencies. The overall averages shown in this table for the 15-kip, 20-kip, and the 25-kip equipment weights were 1.6610, 1.6161, and 1.5649, respectively. Table 9 shows the scaled slopes for n = 1.6 using the 25-Hz equipment as the reference frequency. For example, a slope of 32.6784 is found in Table 7 for the 15-kip, 15-Hz equipment. Thus, the predicted slope s_b is

$$s_b = 32.6784 \left(\frac{25}{15}\right)^{(1.6)} = 73.9978$$

The error between this scaled value and the actual slope is 4.93%. The results in Table 9 shows errors at less than 5%, except for three instances above this value, the largest being 6.74%.

Tables 10-12 show similar results for model F over the same range in the parameters. The analysis of all combinations of frequencies shown in Table 11 yielded the following overall average values of n equal to 1.6489, 1.6070, and 1.5820, for 15-kip, 20-kip, and 25-kip equipment weights, respectively. A value of n = 1.6 was again used to predict the errors against the 25-Hz equipment as shown in Table 12. The results show errors less than 5% except for the 15-kip, 15-Hz equipment, the largest error for all the data being 6.30%. Consequently, based on these results for models B and F, n = 1.6 was selected for scaling on frequencies ranging from 15 Hz to 35 Hz.

GENERAL SCALING RULES

Same Hull

The scaling rules expressed by eqs.(10), (11), and (12), can be and are combined to form the general scaling rule for the same hull:

$$S_b = S_a \left(\frac{Q_a}{Q_b} \right)^{\left(\frac{1}{6}\right)} \left(\frac{W_a}{W_b} \right)^{\left(\frac{1}{6}\right)} \left(\frac{f_b}{f_a} \right)^{(1.6)}$$
(14)

where n = 1/6 is used for the equipment weight scaling exponent, and n = 1.6 for the frequency scaling. The ranges used for applying this rule are: 600 lb to 3,625 lb for the charge weight; 15 kips to 35 kips for the equipment weight; and 15 Hz to 35 Hz for the equipment fixed base frequency.

General Linear Scaling Law

Consider the hull of diameter d shown in Fig.8(a) which includes an equipment of weight w and frequency f subject to a charge weight q at a distance r from the hull. The slope of the response is

$$s = \frac{a}{(s\hat{T})} = \frac{ar}{q^{(1/2)}} \tag{15}$$

where a is the peak acceleration experienced by the equipment. Figure 8(b) represents the linearly scaled model of Fig.8(a), such that the hull, scantlings, equipment, and charge weight are scaled by the factor L = D/d. It follows that

$$S = \frac{A}{(SF)} = \frac{AR}{O^{(1/2)}} \tag{16}$$

Using eqs.(2), (5), and (7), we obtain the general scaling rule for the response slopes as:

$$S = \frac{S}{L^{(3/2)}} \tag{17}$$

Linearly Scaled Hull - Same Equipment, Same Charge Weight

Figure 9 shows a sequence of three hulls. The original hull in Fig.9(a), subject to a charge weight q, supports an equipment of weight w and frequency f. Assume the response slope s is known. Figure 9(b) shows the original configuration that has been linearly scaled, where the equipment weight and frequency are W and F, respectively, and the charge weight is Q. The response slope is S and is related to s by eq.(17). Figure 9(c) shows the hull geometry as being the same as in Fig.9(b), but the equipment and charge weight are the same as the hull in Fig.9(a). Let S' be the response slope for the model in Fig.9(c). It follows that

$$S' = S\left(\frac{Q}{G}\right)^{\left(\frac{1}{2}\right)} \left(\frac{N}{W}\right)^{\left(\frac{1}{6}\right)} \left(\frac{f}{P}\right)^{(1.6)} \tag{18}$$

$$S' = \frac{S}{L^{(3/2)}} (L^3)^{(1/8)} (L^3)^{(1/6)} (L)^{(1.6)}$$
 (19)

$$S'=SL^{(0.975)} (20)$$

Thus, knowing the response slope s for the equipment in the original model in Fig.9(a), one can predict the response slope S' when this equipment is subject to the same shock when placed in the scaled hull in Fig.9(c).

<u>Linearly Scaled Hull - Different Equipment, Different Charge</u> Weight

Consider the same sequence of hulls in Fig.9. Assume that the response slope s is known for the model in Fig.9(a) and that Fig.9(b) is again the linearly scaled model. Suppose an equipment and/or charge weight are different from those in the prototype in Fig.9(a). Equation (19) can be used to predict the response slope for this new and different model. Thus, one could have response data for a particular boat modelled in Fig.9(a) and predict the response for different charge weight, equipment weight, and equipment frequency, respectively, for the model in Fig.9(c). Thus, one could have response data for a particular boat modelled in Fig.9(a) and predict the response for different equipment in a linear scaled hull.

PARABOLIC SCALING

The Intercept Rule

Consider a typical plot of both the linear fit and the parabolic fit through the same set of data (x_i, y_i) as shown in Fig.10. The least squares fit of a straight line is

$$y=Cx (21)$$

where

$$C = \frac{(\sum x_i y_i)}{(\sum x_i^2)} \tag{22}$$

The parabola is expressed by

$$y = Ax + Bx^2 \tag{23}$$

where

$$A = \frac{\left(\left(\sum x_i y_i \right) \left(\sum x_i^4 \right) - \left(\sum x_i^3 \right) \left(\sum x_i^2 y_i \right) \right)}{D} \tag{24}$$

$$B = \frac{\left(\left(\sum x_{i}^{2}\right)\left(\sum x_{i}^{2} y_{i}\right) - \left(\sum x_{i}^{3}\right)\left(\sum x_{i} y_{i}\right)\right)}{D}$$
 (25)

$$D=(\sum x_i^2)(\sum x_i^4)-(\sum x_i^3)^2$$
 (26)

It is interesting to observe that the point of intersection of the two curves at (x_c, y_c) is such that

$$X_{c} = \frac{\left(\sum X_{i}^{3}\right)}{\left(\sum X_{i}^{2}\right)} \tag{27}$$

Thus, \boldsymbol{x}_c has the same value for each set of data provided the \boldsymbol{x}_i values are identical.

Same Hull

Suppose there exists a parabolic least squares fit through a set of data as shown in Fig.11. Consider any two points on the curve: (x_1,y_1) and (x_2,y_2) . The equation for the parabola that passes through these two points is

$$y = E_X + P_X^2 \tag{28}$$

where

$$E = \frac{\left(y_1 x_2^2 - y_2 x_1^2\right)}{\left(x_1 x_2 \left(x_2 - x_1\right)\right)} \tag{29}$$

$$P = \frac{(x_1 y_2 - x_2 y_1)}{(x_1 x_2 (x_2 - x_1))}$$
 (30)

Note that the x-coordinates represent the shock factor and the y-coordinates are the maximum acceleration responses of the equipment. If $x_1 = 0.3$ and $x_2 = 0.6$, eqs.(29) and (30) reduce to

$$E = \frac{(4y_1 - y_2)}{(0.6)} \tag{31}$$

$$F = \frac{(y_2 - 2y_1)}{(0.18)} \tag{32}$$

Equation (28) may be used to generate a parabola through two new values Y_1 and Y_2 , where Y_1 and Y_2 are coordinates obtained by applying eq.(14). For example, suppose we have the least squares parabola through the data for a system composed of charge weight Q_a , equipment weight W_a , and frequency f_a . Think of this curve as the parabola in Fig. 11. Next, consider the same hull geometry containing an equipment of weight W_b and frequency f_b , subject to a charge weight Q_b . Equation (14) predicts the slope for system b. Multiplying both sides of eq. (14) by x yields the relationship between the ordinate values:

$$Y=y\left(\frac{Q_a}{Q_b}\right)^{\left(\frac{1}{a}\right)}\left(\frac{W_a}{W_b}\right)^{\left(\frac{1}{6}\right)}\left(\frac{f_b}{f_a}\right)^{(1.6)}=\alpha y \tag{33}$$

Y is the scaled ordinate through which a new parabola is passed and y is the corresponding point on the reference parabola. Selecting the two coordinates y_1 and y_2 from the reference parabola, we obtain the new ordinate values as

$$Y_1 = \alpha y_1$$

$$Y_2 = \alpha y_2$$

 Y_1 and Y_2 and their corresponding shock factors are substituted into eqs. (29) and (30) to find the equation of the new parabola.

As an example of parabolic scaling for the same hulls, let the reference response data be obtained from model B, containing a 15-kip, 20-Hz equipment subject to a 1,160-lb charge. A parabola will be generated for model B, containing a 25-kip, 30-Hz equipment, subject to a 3,625-lb charge. Equation (33) yields

(34)

Y=1.52375y

The equation for the parabola that passes through the reference data that are listed in Appendix A is

 $y=40.7703x+21.6262x^2$

Choosing $x_1 = 0.3$ and $x_2 = 0.6$, we obtain $y_1 = 14.1774$ and $y_2 = 32.2476$. Substituting these values into eq.(34) yields $Y_1 = 21.6029$ and $Y_2 = 49.1374$. These Y-coordinates are substituted into eqs.(31-32) to yield the scaled parabola

$$Y=62.1239x+32.9530x^2$$

which compares favorably with the actual parabola

$Y=65.0874x+28.9880x^2$

Figure 12 shows the plot of each curve. There is a very good closeness of fit between the scaled parabola (Y_{est}) and the parabola generated through the data (Y_{data}) .

Different Hulls

The parabolic scaling procedure described above was developed for changes in the charge weight and the equipment assuming the same hull. It is now possible to extend this procedure to the case where either the existing equipment and charge weight or the new equipment and charge weight are assigned to a linearly scaled hull.

Let the least squares parabola through the data for the prototype be

$$y=Ex+Fx^2$$

This equation can be adjusted for the linearly scaled system as follows: let y_s be the peak acceleration and x_s be the shock factor in the scaled model. Recall that

$$y_{s} = \frac{y}{L}; x_{s} = \sqrt{L}x \tag{35}$$

The equation of the parabola for the scaled system is

$$y_s = E_s x_s + F_s x_s^2 \tag{36}$$

where, by examining eqs. (29) and (30), it follows that

$$E_{s} = \frac{E}{(L^{(2/2)})}; F_{s} = \frac{F}{L^{2}}$$
 (37)

Thus, the coefficients E and F are scaled by eq.(37) to produce the scaled parabola represented by eq.(36).

Having the scaled parabolic equation in the linearly scaled system, we can now proceed to find the parabola for the conditions desired following the above described procedure for parabolic scaling for the same hull.

RESULTS

Linear Scaling

Table 13 summarizes the tests run on the validity of the general scaling rule given by eq.(17) for models B. The charge weights once again ranged from 600 lb to 3,625 lb; the equipment weight from 15 kips to 25 kips; and the frequency equal to 20 Hz and 30 Hz. In the case of model SBS, L=26/33, while for model LBS, L=40/33. The results show the predicted response slopes compared with the actual slopes for each configuration. The errors are generally less than one percent, except for the comparison between LBS model and model B subject to a charge weight equal to 1450 lb, where the largest error was 1.42%. Table 14 provides the same information for model F. Again, the errors are generally less that one percent, with the largest error being 1.16%

Equation(20) was similarly tested for models B and F. The results for model B are shown in Table 15. In the case of predicting the response slopes for model SB, the errors tend to be about 5% or less, except for the 15-kip, 20-Hz equipment where the error was 10.35%. The errors associated with model LB were less than 5% except in one case where it equaled 5.26%. The results for model F are listed in Table 16. The errors ranged from a low of 0.62% to a high of 7.68% for model SF. In the case of model LF the errors range from 0.36% to 12.13%.

A Word of Caution

Recall the time history motions in Fig.3 for the response of an equipment installed in model B, LBS, and SBS which was used to validate the general linear scaling law. Figure 13 shows the least square response slopes for models B, LB, and LBS. particularly important to observe that higher peak accelerations are experienced by the equipment placed in the linearly scaled hull, namely model LB, and lower peak accelerations in the case of the fully scaled model LBS. Consequently, if shock design values generated from model LBS were used without these scaling rules to predict the actual equipment in model B, the equipment would be underdesigned, and overdesigned if model LB were used. Just the opposite occurs for models SB and SBS as shown in Fig. 14. Now the original equipment installed in Model B would be overdesigned if the predicted design values generated from model SB were used without the new scaling rules and underdesigned in the case of model SBS.

Parabolic Scaling

Two examples are presented for the parabolic scaling rules. In the first example, consider the least squares parabola through the data for model B, 15-kip and 20-Hz equipment, and a 1,160-lb charge:

$$y=40.7703x+21.6262x^2$$
 (38)

Let the linear scaled model by LBS, where L=40/33. Thus, $E_s=30.5510$ and $F_s=14.7193$ in accord with eq.(37). The scaled parabola for model LBS, 26.713-kip, 16.5-Hz equipment, and 2,065.84-lb charge weight, is therefore,

$$y_{x}=30.5510x_{x}+14.7193x_{x}^{2}$$
 (39)

Suppose the equipment and charge weight are changed to $W_b = 44.522 \; \text{kips}$, $f_b = 24.75 \; \text{Hz}$, and $Q_b = 12,911.48 \; \text{lb}$. These conditions can be found in Table A5 so that the scaled parabola can be checked against the parabola based on the data. Choose two points on the parabola, i.e., $x_{s1} = 0.330289 \; \text{and} \; x_{s2} = 0.660578$. Eq.(39) yields $y_{s1} = 11.6964 \; \text{and} \; y_{s2} = 26.6043$. The scaling rule from eq.(14) yields $\alpha = 1.39729$, so that the points through which the final scaled parabola must pass through $Y_{s1} = 16.3433 \; \text{and} \; Y_{s2} = 37.1739$. The equations (31) and (32) for E and F change to

$$E_g = \frac{(4Y_1 - Y_2)}{(0.660578)} = 42.6888$$

$$F_s = \frac{(Y_2 - 2Y_1)}{(0.218182)} = 20.5668$$

since $\rm X_{s1}$ and $\rm x_{s2}$ are the abscissa values in the linearly scaled model. The final scaled parabola is

$$y_s = 42.6888x_s + 20.5668x_s^2$$
 (40)

This compares with the least squares parabola through the data in Table A5:

$$y_{s}=47.1556x_{s}+11.3756x_{s}^{2} \tag{41}$$

Figure 15 shows a good fit between the two parabolas.

Models F and SFS were chosen for the second example of parabolic scaling. In this example the parabolic scaling rule is applied for the case where the equipment in model F remains unchanged when inserted into the linearly scaled model of the hull. The scaled parabola will be compared with the least squares parabola from the data in Table B2 for model SF. The least squares parabola for model F with a 15-kip, 30-Hz equipment, and a 900-lb charge is

$$y=100.2522x+35.3602x^2$$
 (42)

The scaling factor L = 30.83/40.3, so that the scaled parabola for the SFS model is

$$y_{x}=143.3530x_{x}+60.4186x_{x}^{2}$$
 (43)

where, from Table B3, $Q_a=440.17$ lb, $W_a=6.715$ kips, and $f_a=39.216$ Hz. Since $Q_b=900$ lb, $W_b=15$ kips, and $f_b=30$ Hz, the linear scaling $\alpha=0.521016$. In this example, substitute $x_{s1}=0.3$ and $x_{s2}=0.6$ into eq.(43), so that $y_{s1}=25.239855$ and $y_{s2}=56.145938$. Thus,

$$E = \frac{(4 Y_{s1} - Y_{s2})}{(0.6)} = 74.6891$$

$$F = \frac{(Y_{s2} - 2Y_{s1})}{(0.18)} = 31.4790$$

The final scaled parabola is

$$y_{a}=74.6891x_{a}+31.4790x_{a}^{2} (44)$$

This compares with the least squares parabola through the data in Table B2:

$$y_{a}=86.9641x_{a}+15.3309x_{a}^{2}$$
 (45)

The two parabolas shown good agreement as seen in Fig. 16.

SUMMARY AND CONCLUSIONS

The results of this study have demonstrated that useful information may be obtained by using a computer as an initial surrogate for shock testing purposes. These results show the relative changes in shock design values for different boats and attack geometries. It is emphasized that the test sections were small in size and devoid of typical equipment present in a real compartment. Consequently, the results provide only trends in shock design values rather than absolute design numbers.

The general linear scaling law that has been used in practice was shown to provide excellent results for the time history responses generated by the HULL code. One problem is, of course, how to predict the equipment peak accelerations for the case where the hull is fixed and the charge weight, equipment weight, and/or the equipment fixed base frequency varies. The second problem is how to predict these peak accelerations when the equipment and/or charge size are not varied, or a new equipment is installed in the scaled hull.

An attempt to answer the first problem required the collection of large amounts of computer generated data for two submarine models, each of which contained a single-degree of freedom frame-mounted equipment. The recommended rules for scaling on charge weight, equipment weight, and equipment fixed base frequency for a fixed hull size provides a reasonably wide numerical range. The range of errors associated with the scaling rule of eq.(14) are within engineering accuracy. The intent of this general scaling rule is to allow greater usage of existing shock response data for different equipment subject to a variety of shock conditions.

The answer to the second and major problem was answered in two steps. The first step, represented by eq.(17), showed how to obtain the response for the fully scaled model from the unscaled model. The second step, represented by eq.(18), produced a scaling rule that allows the charge weight, equipment weight, and/or the equipment frequency to change to either the original values, in which case eq.(20) is used, or to an entirely new equipment that might be installed in the scaled hull or a new charge weight.

It was shown that care must be exercised when shock design values are generated from a fully scaled model or a scaled hull containing the same equipment as the unscaled model. Depending on the circumstances the generated shock design values may be either too high or too low if the scaling rules are ignored.

A parabolic least squares fit through the data is better than a straight line fit. It was demonstrated that if a parabola is known for a prototype model, a scaled parabola can be generated for the case where the same equipment and charge weight apply for a linearly scaled model or a different equipment and/or charge weight is used in the scaled model. The two example problems showed rather good agreement between the scaled parabola and the least squares parabola generated through the data.

ACKNOWLEDGEMENTS

This study is part of a project supported by the Office of Naval Research. The content of this report does not necessarily reflect the position or policy of the government.

Robert Pohland and Robert Wagner, mechanical engineering graduate students, are recognized for their assistance with this project.

REFERENCES

- 1. O'Hara, G.J., and Cunniff, P.F., "Feasibility Study on Predicting the Response of Equipment Subjected to Various Installations and Underwater Explosions," Technical Report No. 95-5, Department of Mechanical Engineering, University of Maryland, Nov. 1990.
- 2. Cunniff, P.F., O'Hara, G.J. and Burke, M.J., "Hull Code Description," Technical Report No. 88-1, Department of Mechanical Engineering, University of Maryland, April, 1988.
- 3. Cole, R.H., UNDERWATER EXPLOSIONS, Princeton University Press, 1948, pg.424.
- 4. O'Hara, G.J., and Cunniff, P.F., "Scaling for Shock Response of Submarine Equipment," Technical Report No.92-1, Department of Mechanical Engineering, University of Maryland, April 1992.

Table 1 - Equipment Weight Scaling

MODEL B

	15 kip, 2	O Hz			15 kip, 3	O Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	6.5073	6.0219	5.4830	0.15			10.8451
0.30	13.9880	13.2670	12.6493	0.30		27.2055	24.4456
0.45	23.0325	22.2268	18.9597	0.45		44.5929	38.8641
0.60	32.1668	30.3143	27.3157	0.60		61.0938	54.7966
0.75	42.7179	39.4709	36.0714	0.75		73.4683	71.6140
Slopes	54.0409	50.6482	45.7309	Slopes	103.0176	98.4290	91.3436
	20 kip, 2	O Hz			20 kip, 3	O Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
	6.2250		5.3364	0.15		••	10.7133
0.30	13.6857	12.9770	12.0856	0.30			23.2793
0.45	22.0331	21.3429	18.5255	0.45	44.7531	42.4929	36.9790
0.60	30.6274	29.3813	26.1935	0.60		58.2238	52.1899
0.75	40.8301	37.5882	34.3608	0.75		69.6130	68.2240
		0.,,,,,,				*******	***************************************
Slopes	51.6795	48.6348	43.8378	Slopes	97.7300	93.5423	87.0410
	25 kip, 2	0 Hz			25 kip, 3	O Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	6.0044	5.6625	5.3142	0.15	11.6715		10.1368
0.30	13.3875	12.6960	11.5630	0.30	26.0330	24.6671	22.1540
0.45	21.9438	20.8516	18.1265	0.45	42.6144	40.4741	35.2021
0.60	29.1889	28.5723	25.5814	0.60	54.0933	55.4650	49.6744
0.75	38.9767	35.8472	33.5140	0.75	71.6469	66.1916	64.9949
Slopes	49.7273	46.9253	42.7534	Slopes	92.8713	89.0394	82.8755
	30 kip, 2	O Hz			30 kip, 3	0 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	5.8753	5.5372	5.1883	0.15	11.1481	10.4986	9.7676
0.30	13.0928	12.4159	11.1524	0.30	24.8508	23.5437	21.1498
0.45	21.4400	20.3693	17.7374	0.45	40.5810	38.5338	33.6305
0.60	27.8608	28.1286	24.9957	0.60	51.4935	53.2217	47.2796
0.75	37.1996	34.1760	32.7573	0.75	67.9178	62.9388	61.9326
Slopes	47.7360	45.4389	41.7545	Slopes	88.2613	84.9416	78.9988
	25 kin 2	Л Из		_	25 kin 2	0 H2	
SF	35 kip, 2 1160#	1740#	2625#	SF	35 kip, 3 1160#		3635#
0.15	5.7469		3625#				3625# 9.4202
		12.1447	5.0975	0.15 0.30		10.0192	
0.30	12.8060		10.9148				20.2095
	20.9731	19.9087	17.3535	0.45			32.1096
	26.8360	27.4854 32.8141	24.4649	0.60			45.1784 58.9606
0.75	35.6445	32.8141	32.0025	0.75	64.6361	59.8678	20.9000
Slopes	46.0418	44.0538	40.8315	Slopes	84.0555	80.8730	75.3557

Table 2 - n Values for Scaling on All Weight Combinations: Model B

Weight		2	20 Hz		
METATIC	Decimal	1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n	n
35/15	2.3333	0.1891	0.1646	0.1337	0.1625
30/15	2.0000	0.1790	0.1566	0.1312	0.1556
35/20	1.7500	0.2064	0.1768	0.1269	0.1700
25/15	1.6667	0.1628	0.1495	0.1318	0.1480
30/20	1.5000	0.1958	0.1676	0.1201	0.1612
35/25	1.4000	0.2289	0.1877	0.1367	0.1844
20/15	1.3333	0.1553	0.1410	0.1470	0.1478
25/20	1.2500	0.1726	0.1604	0.1122	0.1484
30/25	1.2000	0.2242	0.1765	0.1297	0.1768
35/30	1.1667	0.2344	0.2008	0.1450	0.1934
	Average	0.1948	0.1681	0.1314	
	Std. Dev	0.0266	0.0170	0.0099	
	max	0.2344	0.2008	0.1470	
	min	0.1553	0.1410	0.1122	
				0 1640	
		overall av		0.1648	
		overall ma		0.2344	
		overall mi	LII	0.1122	
		3	30 Hz		
Weight	Decimal	1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n "	n
35/15	2.3333	0.2401	0.2317	0.2271	0.2330
30/15	2.0000	0.2230	0.2125	0.2095	0.2150
		0.2693	0.2601		
35/20	1.7500		0.2601 0.1961	0.2576 0.1905	0.2623
35/20 25/15	1.7500 1.6667	0.2693	0.1961	0.2576	0.2623 0.1965
35/20 25/15 30/20	1.7500 1.6667 1.5000	0.2693 0.2030	0.1961 0.2379	0.2576 0.1905	0.2623
35/20 25/15 30/20 35/25	1.7500 1.6667 1.5000 1.4000	0.2693 0.2030 0.2513	0.1961	0.2576 0.1905 0.2391	0.2623 0.1965 0.2428
35/20 25/15 30/20 35/25 20/15	1.7500 1.6667 1.5000 1.4000 1.3333	0.2693 0.2030 0.2513 0.2964	0.1961 0.2379 0.2859	0.2576 0.1905 0.2391 0.2827	0.2623 0.1965 0.2428 0.2883
35/20 25/15 30/20 35/25 20/15 25/20	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500	0.2693 0.2030 0.2513 0.2964 0.1832	0.1961 0.2379 0.2859 0.1767	0.2576 0.1905 0.2391 0.2827 0.1677	0.2623 0.1965 0.2428 0.2883 0.1758
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285	0.1961 0.2379 0.2859 0.1767 0.2211	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231
35/20 25/15 30/20 35/25 20/15 25/20	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184 0.2399	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167 0.2491	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063 0.2363	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167 0.2491 0.0397	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184 0.2399 0.0402	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063 0.2363 0.0401	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167 0.2491 0.0397 0.3167 0.1832	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184 0.2399 0.0402 0.3184 0.1767	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063 0.2363 0.0401 0.3063 0.1677	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167 0.2491 0.0397 0.3167 0.1832	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184 0.2399 0.0402 0.3184	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063 0.2363 0.0401 0.3063 0.1677	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668
35/20 25/15 30/20 35/25 20/15 25/20 30/25	1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	0.2693 0.2030 0.2513 0.2964 0.1832 0.2285 0.2792 0.3167 0.2491 0.0397 0.3167 0.1832 overall as	0.1961 0.2379 0.2859 0.1767 0.2211 0.2584 0.3184 0.2399 0.0402 0.3184 0.1767	0.2576 0.1905 0.2391 0.2827 0.1677 0.2198 0.2628 0.3063 0.2363 0.0401 0.3063 0.1677	0.2623 0.1965 0.2428 0.2883 0.1758 0.2231 0.2668

Table 3 - Scaled Slopes for Model B Scaled on 25 kip Using n=1/6

		2	20 Hz			
	1160#	%error	1740#	%error	3625#	lerror
15k	49.6304	0.19	46.5146	0.88	41.9986	1.77
20k	49.7928	0.13	46.8593	0.14	42.2374	1.21
25k	49.7273	0.00	46.9253	0.00	42.7534	0.00
30k	49.2088	1.04	46.8408	0.18	43.0428	0.68
35k	48.6975	2.07	46.5949	0.70	43.1867	1.01
		3	30 Hz			
	1160#	%error	1740#	%error	3625#	%error
15k	94.6099	1.87	90.3958	1.52	83.8887	1.22
20k	94.1621	1.39	90.1273	1.22	83.8633	1.19
25k	92.8713	0.00	89.0394	0.00	82.8755	0.00
30k	90.9845	2.03	87.5623	1.66	81.4362	1.74
35k	88.9039	4.27	85.5378	3.93	79.7023	3.83

Table 4 - Equipment Weight Scaling

MODEL F

	15 kip, 2	0 Hz			15 kip,	30 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
	7.6863		6.1514	0.15	15.1687	14.3238	12.7859
0.30	15.8125	15.6288	15.1816	0.30	33.2585	31.6423	29.1711
0.45	26.9363	26.5787	22.6295	0.45	52.6217	52.0236	45.4052
0.60	37.6583	35.8768	32.4759	0.60	70.3431	67.3839	63.9906
0.75	49.2544	46.6812	43.0371	0.75	92.5846	87.0836	83.9613
Slopes	62.6697	60.0043	54.4839	Slopes	119.2541	113.7737	107.0440
					• •		
	20 kip, 2				20 kip,		!!
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	7.4226		6.0474	0.15	14.5925		
0.30	15.2183	15.0171	14.7941	0.30			27.9583
0.45	25.9723	25.4454	21.7966	0.45			43.6672
0.60	36.2894	34.4744	31.3103	0.60			61.5868
0.75	47.4665	44.8990	41.5190	0.75	88.6260	81.7697	80.6869
Slopes	60.3959	57.6459	52.5893	Slopes	114.0015	107.6719	102.9086
STOPES	0010303	0.00.00	021000	CLOPOD		20,,0,2,	
	25 kip, 2	O Hz			25 kip,	30 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	7.1653		5.9444	0.15	•••		11.8306
0.30	15.4732	14.7190	14.3061	0.30	30.7098		26.9124
0.45	25.0337	24.5306	21.1075	0.45	48.6845		41.9781
0.60	34.9587	33.2822	30.1752	0.60	64.1160		59.2508
0.75	45.7280	43.2724	40.0407	0.75	84.9972	78.6681	77.6632
	•						
Slopes	58.3864	55.6582	50.7616	Slopes	109.4486	103.3546	99.0193
	30 kip, 2	0 Hz			30 kip,	30 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	6.9336	6.5440	5.8438	0.15	13.5212	12.8045	11.4184
0.30	15.2025	14.4612	13.8355	0.30	29.6098	28.1280	25.9079
0.45	24.1346	23.8359	20.7502	0.45	46.8287		40.3559
0.60	33.7072	32.3773	29.2618	0.60	61.6885	58.9660	57.0072
0.75	44.0465	41.6805	38.6290	0.75	81.4811	75.6047	74.8017
0	1110103	42.0000	30.0230	0.75	01.4011	73.0047	,4,001,
Slopes	56.3398	53.9256	49.2070	Slopes	105.1377	99.6539	95.3138
	35 kip, 2	O Hz			35 kip, 3	30 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	6.8157		5.7441	0.15			
0.30	14.9391	14.2119	13.3835	0.30			
	23.6704	23.3988	20.3966		45.0186		
	32.4637	31.2470	28.7386		59.4417		54.8269
	42.4228	40.1564		0.75			
Slopes	54.5059	52.2209	48.1806	Slopes	101.1793	95.9557	91.7408

Table 5 - n Values for Scaling on All Weight Combinations: Model F

		2	O Hz		
Weight	Decimal	1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n	n
35/15	2.3333	0.1647	0.1640	0.1451	0.1579
30/15	2.0000	0.1536	0.1541	0.1470	0.1516
35/20	1.7500	0.1834	0.1766	0.1565	0.1721
25/15	1.6667	0.1386	0.1472	0.1385	0.1414
30/20	1.5000	0.1715	0.1645	0.1640	0.1666
35/25	1.4000	0.2044	0.1895	0.1551	0.1830
20/15	1.3333	0.1285	0.1394	0.1230	0.1303
25/20	1.2500	0.1516	0.1573	0.1585	0.1558
30/25	1.2000	0.1957	0.1735	0.1706	0.1799
35/30	1.1667	0.2147	0.2084	0.1367	0.1866
	Average	0.1707	0.1674	0.1495	
	Std. Dev	0.0271	0.0194	0.0135	
	max	0.2147	0.2084	0.1706	
	min	0.1285	0.1394	0.1230	
				0 1605	
		overall av	_	0.1625 0.2147	
		overall ma			
		overall mi	LII	0.1230	
		3	30 Hz		
Weight	Decimal		30 Hz 1740#	3625#	Average
Weight Ratio	Decimal Ratio	1160# n	30 Hz 1740# n	3625# n	Average n
Ratio	Ratio	1160# n	1740#		n
Ratio 35/15	Ratio 2.3333	1160# n 0.1940	1740# n	n	n 0.1924
Ratio 35/15 30/15	Ratio	1160# n	1740# n 0.2010	n 0.1821 0.1674	n
Ratio 35/15 30/15 35/20	Ratio 2.3333 2.0000 1.7500	1160# n 0.1940 0.1818 0.2132	1740# n 0.2010 0.1912	n 0.1821	n 0.1924 0.1801
Ratio 35/15 30/15 35/20 25/15	Ratio 2.3333 2.0000	1160# n 0.1940 0.1818	1740# n 0.2010 0.1912 0.2059	n 0.1821 0.1674 0.2053	n 0.1924 0.1801 0.2081 0.1695
Ratio 35/15 30/15 35/20 25/15 30/20	Ratio 2.3333 2.0000 1.7500 1.6667	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996	1740# n 0.2010 0.1912 0.2059 0.1880	n 0.1821 0.1674 0.2053 0.1525	n 0.1924 0.1801 0.2081
Ratio 35/15 30/15 35/20 25/15 30/20 35/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000	1160# n 0.1940 0.1818 0.2132 0.1680	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909	n 0.1821 0.1674 0.2053 0.1525 0.1891	n 0.1924 0.1801 0.2081 0.1695 0.1932
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490 0.1999	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453 0.2018	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479 0.1890	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490 0.1999 0.0277	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453 0.2018 0.0177	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479 0.1890 0.0322	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490 0.1999 0.0277 0.2490 0.1566	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453 0.2018 0.0177 0.2453 0.1834	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479 0.1890 0.0322 0.2479 0.1370	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490 0.1999 0.0277 0.2490 0.1566 overall av	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453 0.2018 0.0177 0.2453 0.1834 verage	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479 0.1890 0.0322 0.2479 0.1370	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 Average Std. Dev	1160# n 0.1940 0.1818 0.2132 0.1680 0.1996 0.2335 0.1566 0.1826 0.2204 0.2490 0.1999 0.0277 0.2490 0.1566	1740# n 0.2010 0.1912 0.2059 0.1880 0.1909 0.2208 0.1916 0.1834 0.2000 0.2453 0.2018 0.0177 0.2453 0.1834 verage	n 0.1821 0.1674 0.2053 0.1525 0.1891 0.2269 0.1370 0.1727 0.2092 0.2479 0.1890 0.0322 0.2479 0.1370	n 0.1924 0.1801 0.2081 0.1695 0.1932 0.2270 0.1617 0.1796 0.2099

Table 6 - Scaled Slopes for Model F Scaled on 25 kip Using n=1/6

			20 Hz			
	1160#	%error	1740#	%error	3625#	%error
15k	57.5550	1.42	55.1071	0.99	50.0372	1.43
20k	58.1910	0.33	55.5414	0.21	50.6694	0.18
25k	58.3864	0.00	55.6582	0.00	50.7616	0.00
30k	58.0781	0.53	55.5894	0.12	50.7252	0.07
35k	57.6499	1.26	55.2330	0.76	50.9597	0.39
			30 Hz			
	1160#	%error	1740#	lerror	3625#	%error
15k	109.5213	0.07	104.4882	1.10	98.3077	0.72
20k	109.8396	0.36	103.7411	0.37	99.1517	0.13
25k	109.4486	0.00	103.3546	0.00	99.0193	0.00
30k	108.3815	0.97	102.7286	0.61	98.2545	0.77
35k	107.0154	2.22	101.4905	1.80	97.0325	2.01

Table 7 - Equipment Frequency Scaling

MODEL B

	15 kip,	15 Up			15 kip,	20 H2	
SF	1160#		3625#	SF			3625#
0.15		3.6317		0.15		6.0219	
0.13	8.2642		7.6219	0.30	13.9880		
				0.30	23.0325		
0.45	13.9582			0.60			
0.60		18.4967	21.7263	0.75	42.7179		36.0714
0.75	25.8466	23.9049	21.7263	0.75	42./1/9	39.4709	36.0714
Slopes	32.6784	30.6444	27.5683	Slopes	54.0409	50.6482	45.7309
	15 kip,	25 Hz			15 kip,	30 Hz	
SF	1160#	1740#	3625#	SF		1740#	3625#
0.15		8.8646		0.15		12.1329	
0.30		19.8770		0.30	28.6857	27.2055	
0.45		32.6577		0.45			
		45.0957		0.60		61.0938	
0.75	60.9737		52.5091	0.75	79.7418		71.6140
Slopes	77.8358	73.6055	66.9400	Slopes	103.0176	98.4290	91.3436
	15 kip,	35 Hz			20 kip,	15 Hz	
SF	1160#		3625#	SF	1160#		3625#
0.15		15.5262		0.15			
		34.8182	31.3474	0.30	8.0329	7.7929	7.4322
		57.2295		0.45		13.0590	11.0401
		79.0245		0.60			
	101.6191		91.9194	0.75	25.1629		
01.3	101.0131	33,010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.75	23.1023	23.2003	2111101
Slopes	131.5597	126.1855	117.2049	Slopes	31.8062	29.8979	26.8406
	20 kip,	20 H2			20 kip,	25 Hz	
SF	1160#		3625#	SF	1160#		3625#
0.15		5.7857		0.15		8.5646	
0.30		12.9727		0.13			
0.45				0.30			
0.60			26.1935	0.45	42.4712		38.6750
0.00	40.8301	37.5730	34.3608	0.75	56.6716		50.6362
0.75	40.6301	37.5730	34.3608	0.75	20.6/16	52.0364	50.6362
Slopes	51.6795	48.7367	43.8378	Slopes	73.0046	69.7609	64.5518
	20 kip,	30 Hz			20 kip,	35 Hz	
SF	1160#		3625#	SF	1160#		3625#
0.15		11.5340		0.15			
0.30		25.8647		0.30			
0.45		42.4929		0.45			
		58.6734		0.60			
0.75			68.2240	0.75			
Slopes	97.7410	93.7409	87.0410	Slopes		118.0354	

(Table 7 con't.)

Slopes 114.7278 110.3818 102.8143

	25 kip, 1	15 Hz			25 kip, 2	0 Hz	
SF	1160#	1740#	3625#	SF		1740#	
0.15	3.7212	3.4475	3.2312	0.15	6.0044	5.6625	5.3142
0.30	7.8153	7.5849	7.2463	0.30	13.3875	12.6960	11.5630
0.45	13.2181	12.7537	10.7545	0.45	21.9438	20.8516	18.1265
0.60	18.4763	17.5273	15.6757	0.60	29.1889	28.5723	25.5814
0.75	24.4946	22.6423	20.6980	0.75	38.9767	35.8472	33.5140
Slopes	30.9557	29.1151	26.2036	Slopes	49.7273	46.9253	42.7534
	25 kip, 2	25 Hz		:	25 kip, 3	0 Hz	
SF	1160#	1740#	3625#	SF	1160#	1740#	3625#
0.15	8.7781	8.2727	7.7059	0.15	11.6715	11.0003	10.1368
0.30	19.5595	18.5506	16.6819	0.30	26.0330	24.6671	22.1540
0.45	32.0629	30.4370	26.5131	0.45	42.6144	40.4741	35.2021
0.60	40.9129	42.0232	37.3947	0.60	54.0933	55.4650	49.6744
0.75	54.2584	50.0335	48.8693	0.75	71.6469	66.1916	64.9949
Slopes	70.1853	67.2661	62.3678	Slopes	92.8713	89.0394	82.8755
	25 kip, 3						
SF	1160#	1740#	3625#				
0.15		13.6753	12.5167				
0.30	32.3692	30.6690	27.5831				
0.45		50.1044	43.8278				
0.60	66.9270	69.1888	61.6636				
0.75	88.2231	81.7136	80.4795				

Table 8 - n Values for Scaling on All Frequency Combinations: Model B

			15 kip		
Frequency 1	Decimal	1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n	n
35/15	2.3333	1.6438	1.6704	1.7081	1.6741
30/15	2.0000	1.6565		1.7283	1.6894
35/20	1.7500	1.5899		1.6818	1.6343
25/15	1.6667	1.6990		1.7367	1.7170
30/20	1.5000	1.5912		1.7063	1.6454
35/25	1.4000	1.5599		1.6647	1.6089
20/15	1.3333	1.7486		1.7593	1.7515
25/20	1.2500	1.6351		1.7075	1.6726
30/25	1.2000	1.5374		1.7049	1.6121
35/30	1.1667	1.5865	1.6115	1.6172	1.6051
γ	verage	1.6248	1.6568	1.7015	
St	td. Dev	0.0616	0.0477	0.0377	
ma	ax	1.7486	1.7466	1.7593	
m:	in	1.5374	1.5940	1.6172	
		overall	average	1.6610	
		overall	max	1.7593	
		overall	min	1.5374	
_			20 kip	"	_
Frequency l		1160#	1740#	3625#	Average
Ratio	Ratio	n	1740# n	n	n
Ratio 35/15	Ratio 2.3333	n 1.5938	1740# n 1.6207	n 1.6615	n 1.6253
Ratio 35/15 30/15	Ratio 2.3333 2.0000	n 1.5938 1.6197	1740# n 1.6207 1.6486	n 1.6615 1.6973	n 1.6253 1.6552
Ratio 35/15 30/15 35/20	Ratio 2.3333 2.0000 1.7500	n 1.5938 1.6197 1.5457	1740# n 1.6207 1.6486 1.5806	n 1.6615 1.6973 1.6390	n 1.6253 1.6552 1.5885
Ratio 35/15 30/15 35/20 25/15	Ratio 2.3333 2.0000 1.7500 1.6667	n 1.5938 1.6197 1.5457 1.6265	1740# n 1.6207 1.6486 1.5806 1.6587	n 1.6615 1.6973 1.6390 1.7179	n 1.6253 1.6552 1.5885 1.6677
Ratio 35/15 30/15 35/20 25/15 30/20	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000	n 1.5938 1.6197 1.5457 1.6265 1.5717	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132	n 1.6615 1.6973 1.6390 1.7179 1.6916	n 1.6253 1.6552 1.5885 1.6677 1.6255
Ratio 35/15 30/15 35/20 25/15 30/20 35/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000	n 1.5938 1.6197 1.5457 1.6265 1.5717	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30 Av	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage td. Dev	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815 0.0547	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531 1.6986	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682 1.7342	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30 Av	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage td. Dev	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531 1.6986	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30 Av	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage td. Dev	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815 0.0547 1.6873	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531 1.6986 1.4950	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682 1.7342 1.5007	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30 Av	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage td. Dev	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815 0.0547 1.6873 1.4774	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531 1.6986 1.4950 average	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682 1.7342 1.5007	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202
Ratio 35/15 30/15 35/20 25/15 30/20 35/25 20/15 25/20 30/25 35/30 Av	Ratio 2.3333 2.0000 1.7500 1.6667 1.5000 1.4000 1.3333 1.2500 1.2000 1.1667 verage td. Dev	n 1.5938 1.6197 1.5457 1.6265 1.5717 1.5441 1.6873 1.5482 1.6005 1.4774 1.5815 0.0547 1.6873 1.4774	1740# n 1.6207 1.6486 1.5806 1.6587 1.6132 1.5630 1.6986 1.6072 1.6205 1.4950 1.6106 0.0531 1.6986 1.4950 average max	n 1.6615 1.6973 1.6390 1.7179 1.6916 1.5759 1.7053 1.7342 1.6395 1.5007 1.6563 0.0682 1.7342 1.5007	n 1.6253 1.6552 1.5885 1.6677 1.6255 1.5610 1.6970 1.6299 1.6202

(Table 8 con't.)

			25 kip		
Frequency	Decimal	1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n	n
35/15	2.3333	1.5461	1.5729	1.6134	1.5775
30/15	2.0000	1.5850	1.6127	1.6612	1.6196
35/20	1.7500	1.4939	1.5285	1.5680	1.5301
25/15	1.6667	1.6025	1.6393	1.6976	1.6464
30/20	1.5000	1.5406	1.5797	1.6324	1.5842
35/25	1.4000	1.4605	1.4720	1.4856	1.4727
20/15	1.3333	1.6476	1.6591	1.7017	1.6695
25/20	1.2500	1.5442	1.6138	1.6922	1.6167
30/25	1.2000	1.5362	1.5381	1.5593	1.5445
35/30	1.1667	1.3710	1.3939	1.3985	1.3878
	Average	1.5328	1.5610	1.6010	
	Std. Dev	0.0735	0.0769	0.0947	
	max	1.6476	1.6591	1.7017	
	min	1.3710	1.3939	1.3985	
		overall av	verage	1.5649	
		overall ma	_	1.7017	
		overall m	_	1,3710	

Table 9 - Scaled Slopes for Model B Scaled on 25 Hz Using n=1.6

15 kip								
		1160#	%error	1740#	terror	3625#	terror	
15	Hz	73.9978	4.93	69.3920	5.72	62.4264	6.74	
20	Hz	77.2287	0.78	72.3802	1.66	65.3530	2.37	
25	Hz	77.8358	0.00	73.6055	0.00	66.9400	0.00	
30	Hz	76.9523	1.14	73.5247	0.11	68.2320	1.93	
35	HZ	76.7924	1.34	73.6554	0.07	68.4134	2.20	
				20 kip				
		1160#	%error	1740#	terror	3625#	%error	
15	Hz	72.0228	1.34	67.7016	2.95	60.7785	5.85	
20	Hz	73.8541	1.16	69.6486	0.16	62.6476	2.95	
25	Hz	73.0046	0.00	69.7609	0.00	64.5518	0.00	
30	Hz	73.0107	0.01	70.0227	0.38	65.0180	0.72	
35	Hz	71.6435	1.86	68.8981	1.24	64.0306	0.81	
			;	25 kip				
		1160#	%error	1740#	%error	3625#	%error	
15	Hz	70.0969	0.13	65.9290	1.99	59.3361	4.86	
20	Hz	71.0642	1.25	67.0599	0.31	61.0980	2.04	
25	Hz	70.1853	0.00	67.2661	0.00	62.3678	0.00	
30	Hz	69.3732	1.16	66.5108	1.12	61.9065	0.74	
35		66.9675	4.58	64.4307	4.22	60.0135	3.77	

Table 10 - Equipment Frequency Scaling

MODEL F

	25 1-1 1				16 bin	20 Ha	
	15 kip, 3	15 HZ	0.505#	C.P.	15 kip, 3		2625#
SF		1740#		SF	1160#		
	4.5888		3.6402			7.1291	
0.30		9.3079	9.0414	0.30			
	16.1761				26.9363		
	22.6121			0.60			
0.75	29.5111	27.9414	25.7441	0.75	49.2544	46.6812	43.0371
Slopes	37.5890	35.9100	32.5979	Slopes	62.6697	60.0044	54.4839
	15 kip, 2	25 Hz			15 kip, :	30 Hz	
SF		1740#	3625#	SF	1160#	1740#	3625#
0.15			9.2764	0.15	15.1687	14.3238	
	24.1389				33.2585		
					52.6217		
	54.1848		46.7595		70.3431		63.9906
0.75			62.0838	0.75		87.0836	83.9613
0.75	70.0133	00.3303	02.0030	31.73	3210010	0.1000	331332
Slopes	90.4970	86.4578	78.7818	Slopes	119.2541	113.7737	107.0440
	15 kip, 3	35 Hz			20 kip,	15 Hz	
SF		1740#	3625#	SF	1160#		3625#
	19.6010					4.1203	
	42.9113				9.2948		8.8727
	68.0186			0.45		15.4791	
	89.6583		82.7505		22.1322		
	118.9112			0.75			
Slopes	153.0508	144.6483	138.2846	Slopes	36.8101	35.1658	31.9502
	20 kip, 2	20 Hz			20 kip,	ንፍ ሁ?	
SF	1160#		3625#	SF	1160#		3625#
		6.8157		0.15			
0.15							
	15.2183			0.30			
0.45				0.45			
0.60		34.4744	31.3103	0.60		49.1826	45.1785
0.75	47.4665	44.8990	41.5190	0.75	66.7710	63.1937	59.3924
Slopes	60.3959	57.6459	52.5893	Slopes	85.7675	82.1693	75.7631
	20 kip,	30 Hz			20 kip,	35 Hz	
SF		1740#		SF			
			11.8305	0.15	18.6050	17.6189	15.7121
0.30	30.7098	30.4166	26.9123	0.30	40.7544	38.7136	35.6700
0.45	48.6845	50.0847	41.9781	0.45	64.4914	63.8860	55.5857
			59.2507		84.9684	81.0488	
	84.9971					104.1319	
Slopes	109.4485	107.4590	99.0191	Slopes	144.8355	137.1587	131.2428

(Table 10 con't.)

Slopes 164.0318 156.0572 148.8079

SF 1160# 1740# 3625# SF 1 0.15 4.4143 4.0433 3.5018 0.15 7 0.30 9.0994 8.9216 8.7088 0.30 15 0.45 15.5011 15.1690 13.0182 0.45 25 0.60 21.6806 20.7193 18.6704 0.60 34	kip, 20 Hz 1160# 1740# 3625# 7.1653 6.6597 5.9444 5.4732 14.7190 14.3061 5.0337 24.5306 21.1075 1.9587 33.2822 30.1752 5.7280 43.2724 40.0407 3.3864 55.6582 50.7616
0.15 4.4143 4.0433 3.5018 0.15 7 0.30 9.0994 8.9216 8.7088 0.30 15 0.45 15.5011 15.1690 13.0182 0.45 25 0.60 21.6806 20.7193 18.6704 0.60 34 0.75 28.3226 26.7777 24.7370 0.75 45	7.1653 6.6597 5.9444 5.4732 14.7190 14.3061 5.0337 24.5306 21.1075 1.9587 33.2822 30.1752 5.7280 43.2724 40.0407
0.30 9.0994 8.9216 8.7088 0.30 15 0.45 15.5011 15.1690 13.0182 0.45 25 0.60 21.6806 20.7193 18.6704 0.60 34 0.75 28.3226 26.7777 24.7370 0.75 45	5.4732 14.7190 14.3061 5.0337 24.5306 21.1075 4.9587 33.2822 30.1752 5.7280 43.2724 40.0407
0.45 15.5011 15.1690 13.0182 0.45 25 0.60 21.6806 20.7193 18.6704 0.60 34 0.75 28.3226 26.7777 24.7370 0.75 45	5.0337 24.5306 21.1075 1.9587 33.2822 30.1752 5.7280 43.2724 40.0407
0.60 21.6806 20.7193 18.6704 0.60 34 0.75 28.3226 26.7777 24.7370 0.75 45	1.9587 33.2822 30.1752 5.7280 43.2724 40.0407
0.75 28.3226 26.7777 24.7370 0.75 45	5.7280 43.2724 40.0407
lopes 36.0548 34.4436 31.3140 Slopes 58	3.3864 55.6582 50.7616
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	kip, 30 Hz
	L160# 1740# 3625#
	1.0275 13.2726 11.8306
0.30 22.8540 21.7438 19.9804 0.30 30	0.7098 29.2302 26.9124
0.45 36.1851 35.7715 31.2146 0.45 48	3.6845 48.2118 41.9781
0.60 48.1966 46.5010 43.9989 0.60 64	1.1160 60.7416 59.2508
0.75 63.5570 59.5971 57.7095 0.75 84	1.9972 78.6681 77.6632
lopes 81.8504 78.1376 73.5682 Slopes 109).4486 103.3546 99.0193
25 kip. 35 Hz	
lopes 137.3987 130.3358 124.5777	
" " "	
0.30 46.3784 44.0780 40.6902	
0.45 72.8766 72.3270 63.2746	
A CO AC TCAA AA TAAA AA AFFA	
0.60 96.7689 92.5348 89.0558	
0.30 22.8540 21.7438 19.9804 0.30 36 0.45 36.1851 35.7715 31.2146 0.45 48 0.60 48.1966 46.5010 43.9989 0.60 64 0.75 63.5570 59.5971 57.7095 0.75 84 lopes 81.8504 78.1376 73.5682 Slopes 109 25 kip, 35 Hz SF 1160# 1740# 3625# 0.15 17.7210 16.7824 14.9644 0.30 38.7754 36.8400 33.8630 0.45 61.1187 60.6164 52.8287 0.60 80.7443 77.2179 74.4411 0.75 106.3868 98.8174 97.7651 lopes 137.3987 130.3358 124.5777 25 kip, 40 Hz SF 1160# 1740# 3625# 0.15 21.2398 20.1160 17.9333 0.30 46.3784 44.0780 40.6902 0.45 72.8766 72.3270 63.2746	0.7098 29.2302 26.9 8.6845 48.2118 41.9 4.1160 60.7416 59.2

Table 11 - n Values for Scaling on All Frequency Combinations: Model F

		15	kip		
Frequenc	y Decimal		1740#	3625#	Average
Ratio	Ratio	n n	n "	n "	n
35/15	2.3333	1.6571	1.6444	1.7055	1.6690
30/15	2.0000	1.6657	1.6637	1.7154	1.6816
35/20	1.7500	1.5955	1.5723	1.6644	1.6107
25/15	1.6667	1.7200	1.7200	1.7275	1.7225
30/20	1.5000	1.5868	1.5779	1.6656	1.6101
35/25	1.4000	1.5617	1.5295	1.6721	1.5878
20/15	1.3333	1.7768	1.7846	1.7855	1.7823
25/20	1.2500	1.6466	1.6368	1.6526	1.6454
30/25	1.2000	1.5135	1.5059	1.6814	1.5669
35/30	1.1667	1.6186	1.5575	1.6612	1.6125
	Average	1.6342	1.6193	1.6931	
	Std. Dev	0.0729	0.0831	0.0390	
	max	1.7768	1.7846	1.7855	
	min	1.5135	1.5059	1.6526	
				1 6400	
		overall ma	_	1.6489 1.7855	
		overall max overall min		1.5059	
		Overall M.	LII	1.5059	
			kip		
Frequenc		1160#	1740#	3625#	Average
Ratio	Ratio	n	n	n	n
35/15	2.3333	1.6167	1.6064	1.6675	1.6302
30/15	2.0000	1.5721	1.6115	1.6319	1.6052
35/20	1.7500	1.5630	1.5490	1.6342	1.5821
25/15	1.6667	1.6559	1.6614	1.6903	1.6692
30/20	1.5000	1.4663	1.5360	1.5607	1.5210
35/25	1.4000	1.5572	1.5227	1.6329	1.5710
20/15	1.3333	1.7212	1.7180	1.7322	1.7238
25/20	1.2500	1.5717	1.5885	1.6362	1.5988
30/25	1.2000	1.3373	1.4717	1.4683	1.4258
35/30	1.1667	1.8173	1.5831	1.8277	1.7427
	Average	1.5879	1.5848	1.6482	
	Std. Dev	0.1247	0.0672	0.0907	
	max	1.8173	1.7180	1.8277	
	min	1.3373	1.4717	1.4683	
		overall av	verage	1.6070	
		overall ma		1.8277	
		overall m		1.3373	

(Table 11 con't.)

25 kip							
Frequency	Decimal	1160#	1740#	3625#	Average		
Ratio	Ratio	n	n	n	n		
35/15	2.3333	1.5790	1.5706	1.6297	1.5931		
30/15	2.0000	1.6020	1.5853	1.6609	1.6161		
35/20	1.7500	1.5293	1.5205	1.6043	1.5513		
25/15	1.6667	1.6050	1.6036	1.6721	1.6269		
30/20	1.5000	1.5498	1.5265	1.6479	1.5747		
35/25	1.4000	1.5395	1.5206	1.5654	1.5418		
20/15	1.3333	1.6756	1.6682	1.6792	1.6743		
25/20	1.2500	1.5139	1.5203	1.6629	1.5657		
30/25	1.2000	1.5937	1.5341	1.6295	1.5858		
35/30	1.1667	1.4754	1.5047	1.4895	1.4899		
·	Average	1.5663	1.5554	1.6242			
	Std. Dev	0.0539	0.0487	0.0555			
	max	1.6756	1.6682	1.6792			
	min	1.4754	1.5047	1.4895			
		overall av	verage	1.5820			
	overall max						
	overall min						

Table 12 - Scaled Slopes for Model F Scaled on 25 Hz Using n=1.6

15 kip								
		1160#	%error	1740#	lerror	3625#	%error	
15	Hz	85.1175	5.94	81.3155	5.95	73.8155	6.30	
20	Hz	89.5599	1.04	85.7510	0.82	77.8618	1.17	
25	Hz	90.4970	0.00	86.4578	0.00	78.7818	0.00	
30	Hz	89.0806	1.57	84.9869	1.70	79.9599		
35	Hz	89.3369	1.28	84.4323	2.34	80.7177	2.46	
40	Hz	88.5025	2.20	83.8507	3.02	80.2410	1.85	
			2	20 kip				
		1160#	%error	1740#	terror	3625#	%error	
15	Hz	83.3537	2.81	79.6303	3.09	72.3488	4.51	
20	Hz	86.3105	0.63	82.3805	0.26	75.1542	0.80	
25	Hz	85.7675	0.00	82.1693	0.00	75.7631	0.00	
30	Hz	81.7560	4.68	80.2699	2.31	73.9655	2.37	
35	Hz	84.5415	1.43	80.0605	2.57	76.6074	1.11	
40	Hz	82.6863	3.59	78.5198	4.44	74.9684	1.05	
25 kip								
		1160#	%error	1740#	%error	3625#	%error	
15	Hz	81.6434	0.25	77.9950	0.18	70.9082	3.62	
20	Hz	83.4387	1.94	79.5399	1.79	72.5423	1.39	
25	Hz	81.8504	0.00	78.1376	0.00	73.5682	0.00	
30	Ηz	81.7561	0.12	77.2040	1.19	73.9656	0.54	
35	Ηz	80.2006	2.02	76.0780	2.64	72.7169	1.16	
40	Ηz	77.3279	5.53	73.5685	5.85	70.1510	4.64	

Table 13 - Application of General Scaling Law, Eq. (17): Model B

Model B -- Predicted Slopes for Model SBS

	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	81.1283	78.6741	77.2740	74.8540	72.4228	65.3914
	152.9645	150.5211	147.3066	143.1768	140.7453	130.6138
20k,20Hz	77.4867	75.0109	73.8974	71.7688	69.5437	62.6845
	145.1659	142.8177	139.7457	135.9652	133.7577	124.4614
25k,20Hz	74.0050	71.9499	71.1059	68.8254	67.0994	61.1338
25k,30Hz	137.6053	135.4997	132.7982	129.2238	127.3189	118.5051
2010, 20112						
Model SBS	Actua	al Slopes				
		p				
15k,20Hz	80.9118	78.5517	77.1814	73.8698	72.5807	65.4083
	152.6595	150.2878	147.3027	143.9568	141.0518	130.6443
			73.8961	70.8851	69.6949	62.7000
20k,20Hz	77.2505	74.8928				
	144.8728	142.5926	139.7395	136.7946	134.0465	124.4877
25k,20Hz	73.8018	71.8525	71.1154	68.7721	67.2440	61.1555
25k,30Hz	137.3274	135.2861	132.8187	130.2371	127.5945	118.5527
•						
			% Errors			
15k,20Hz	0.27	0.16	0.12	1.33	0.22	0.03
15k,30Hz	0.20	0.16	0.00	0.54	0.22	0.02
20k,20Hz	0.31	0.16	0.00	1.25	0.22	0.02
20k,30Hz	0.20	0.16	0.00	0.61	0.22	0.02
25k,20Hz	0.28	0.14	0.01	0.08	0.22	0.04
25k,30Hz	0.20	0.16	0.02	0.78	0.22	0.04
Model B -	- Predict	ted Slopes	s for Mode	el LBS		
		-				
	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	42.5150	41.2289	40.4952	39.2270	37.9529	34.2681
15k,30Hz	80.1606	78.8801	77.1956	75.0313	73.7571	68.4478
			38.7257			
20k,20Hz	40.6066	39.3092		37.6102	36.4442	32.8496
20k,30Hz	76.0737	74.8432	73.2333	71.2522	70.0953	65.2236
25k,20Hz	38.7821	37.7051	37.2628	36.0677	35.1632	32.0370
25k,30Hz	72.1116	71.0082	69.5925	67.7194	66.7211	62.1022
•						
Model LBS	Actua	al Slopes				
		-				
15k,20Hz	42.4081	41.1729	40.5210	38.7174	38.0260	34.2675
15k,30Hz	80.0119	78.7736	77.2320	73.9772	73.9001	68.4459
20k,20Hz	40.5034	39.2558	38.7454	37.1798	36.5150	32.8497
20k,30Hz	75.9329	74.7424	73.2678	70.2559	70.2320	65.2219
25k,20Hz	38.6829	37.6626	37.2876	35.6633	35.2302	32.0390
25k,30Hz	71.9790	70.9133	69.6398	66.8721	66.8517	62.1131
_			% Errors			
15k,20Hz	0.25	0.14	0.06	1.32	0.19	0.00
15k,30Hz	0.19	0.14	0.05	1.42	0.19	0.00
20k,20Hz	0.25	0.14	0.05	1.16	0.19	0.00
20k,30Hz	0.19	0.13	0.05	1.42	0.19	0.00
25k,20Hz	0.26	0.11	0.07	1.13	0.19	0.01
25k,30Hz	0.18	0.13	0.07	1.27	0.20	0.02

Table 14 - Application of General Scaling Law, Eq. (17): Model F

Model F -- Predicted Slopes for Model SFS

	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	94.8831	94.3169	92.9175	90.4048	88.9655	80.7807
	184.2151	180.8103	176.8124	171.8294	168.6868	158.7090
•	91.2608	90.7293	89.5461	87.1237	85.4688	77.9716
20k,20Hz						
	177.3824	173.0757	169.0246	163.5076	159.6400	152.5777
25k,20Hz	87.7850	87.3189	86.5667	84.0660	82.5218	75.2619
25k,30Hz	170.0811	165.9697	162.2742	156.9833	153.2390	146.8111
Model SFS	Actua	al Slopes				
15k,20Hz	95.5560	95.0241	93.8909	91.1718	89.5320	81.4344
15k,30Hz	185.4826	182.1611	178.2545	173.2567	170.3437	159.9764
20k,20Hz	91.9091	91.4055	90.4857	87.8731	86.3100	78.5630
	178.6100	174.3909	170.3892	164.8775	160.9170	153.7541
25k,20Hz	88.4012	87.9814	87.2773	84.7855	83.3375	75.9534
25k,30Hz	171.2538	167.2259	163.6361	158.3070	154.7770	147.9915
			% Errors			
15k,20Hz	0.70	0.74	1.04	0.84	0.63	0.80
15k,30mz	0.68	0.74	0.81	0.82	0.97	0.79
20k,20Hz	0.71	0.74	1.04	0.85	0.97	0.75
20k,20Hz	0.69	0.75	0.80	0.83	0.79	0.77
	0.70	0.75	0.80	0.85	0.98	0.77
25k,20Hz						
25k,30Hz	0.68	0.75	0.83	0.84	0.99	0.80
Model F -	- Predic	ted Slopes	s for Mode	el LFS		
	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	42.8205	42.5650	41.9335	40.7995	40.1500	36.4562
15k,30Hz	83.1359	81.5993	79.7951	77.5463	76.1280	71.6250
20k,20Hz	41.1858	40.9460	40.4120	39.3188	38.5719	35.1884
20k,30Hz	80.0523	78.1087	76.2804	73.7906	72.0452	68.8580
		39.4069	39.0674	37.9388	37.2419	33.9655
25k,20Hz	39.6172					
25k,30Hz	76.7573	74.9018	73.2340	70.8462	69.1564	66.2556
Model LFS	Actua	al Slopes				
15k,20Hz	43.1493	42.9191	42.4239	41.1542	40.4546	36.7769
15k,30Hz	83.7596	82.2760	80.5439	78.2035	76.9664	72.2526
20k,20Hz				39.6653		
•	41.5029	41.2848	40.8854		38.9983	35.4802
20k,30Hz	80.6564	78.7700	76.9917	74.4286	72.7116	69.4417
25k,20Hz	39.9178	39.7376	39.4354	38.2714	37.6550	34.3016
25k,30Hz	77.3329	75.5321	73.9393	71.4616	69.9363	66.8381
			% Errors			
15k,20Hz	0.76	0.83	1.16	0.86	0.75	0.87
15k,30Hz	0.74	0.82	0.93	0.84	1.09	0.87
20k,20Hz	0.74	0.82	1.16	0.87	1.09	0.82
20k,30Hz	0.75	0.84	0.92	0.86	0.92	0.84
25k,20Hz	0.75	0.83	0.93	0.87	1.10	0.98
25k,30Hz	0.74	0.83	0.95	0.86	1.12	0.87

Table 15 - Application of Scaling Rule, Eq. (20): Model B

Model B -- Predicted Slopes for Model SB

	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	44.9686	43.6083	42.8322	41.4908	40.1432	36.2458
15k,30Hz	84.7867	83.4323	81.6506	79.3615	78.0137	72.3979
20k, 20Hz	42.9501	41.5778	40.9606	39.7807	38.5474	34.7454
20k,30Hz	80.4640	79.1624	77.4597	75.3642	74.1406	68.9877
25k,20Hz	41.0202	39.8811	39.4133	38.1492	37.1925	33.8858
25k,30Hz	76.2733	75.1062	73.6088	71.6275	70.5716	65.6862
•						
Model SB	Actual	l Slopes				
15k,20Hz	47.4564	44.1972	42.8883	41.6649	40.4632	40.4322
15k,30Hz	89.4842	83.4618	82.5339	82.4570	80.1964	71.0861
20k,20Hz	44.9945	41.8477	40.8071	39.8977	38.8161	37.3083
20k,30Hz	83.7895	78.3176	77.4541	77.5448	75.4095	66.6908
25k,20Hz	42.7108	39.7092	39.1862	38.7502	37.7129	34.6656
25k,30Hz	78.5396	73.5559	72.7762	72.9090	70.9778	62.6799
·						
			% Errors			
15k,20Hz	5.24	1.33	0.13	0.42	0.79	10.35
15k,30Hz	5.25	0.04	1.07	3.75	2.72	1.85
	4.54	0.65	0.38	0.29	0.69	6.87
20k,20Hz						
20k,30Hz	3.97	1.08	0.01	2.81	1.68	3.44
25k,20Hz	3.96	0.43	0.58	1.55	1.38	2.25
25k,30Hz	2.89	2.11	1.14	1.76	0.57	4.80
· - ,						
Model B -	Predict	ed Slopes	s for Mode	el LB		
		•				
	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	68.4414	66.3710	65.1898	63.1483	61.0973	55.1654
15k,30Hz	129.0438	126.9825	124.2707	120.7867	118.7354	110.1883
15k,30Hz 20k,20Hz	129.0438 65.3693	126.9825 63.2806	124.2707 62.3413	120.7867 60.5456	118.7354 58.6684	110.1883 52.8818
15k,30Hz 20k,20Hz 20k,30Hz	129.0438 65.3693 122.4647	126.9825 63.2806 120.4837	124.2707 62.3413 117.8922	120.7867 60.5456 114.7029	118.7354 58.6684 112.8406	110.1883 52.8818 104.9980
15k,30Hz 20k,20Hz	129.0438 65.3693	126.9825 63.2806	124.2707 62.3413	120.7867 60.5456	118.7354 58.6684	110.1883 52.8818
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320	126.9825 63.2806 120.4837 60.6984	124.2707 62.3413 117.8922 59.9863	120.7867 60.5456 114.7029 58.0624	118.7354 58.6684 112.8406 56.6063	110.1883 52.8818 104.9980
15k,30Hz 20k,20Hz 20k,30Hz	129.0438 65.3693 122.4647	126.9825 63.2806 120.4837	124.2707 62.3413 117.8922	120.7867 60.5456 114.7029	118.7354 58.6684 112.8406	110.1883 52.8818 104.9980 51.5736
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865	126.9825 63.2806 120.4837 60.6984 114.3102	124.2707 62.3413 117.8922 59.9863	120.7867 60.5456 114.7029 58.0624	118.7354 58.6684 112.8406 56.6063	110.1883 52.8818 104.9980 51.5736
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865	126.9825 63.2806 120.4837 60.6984 114.3102	124.2707 62.3413 117.8922 59.9863	120.7867 60.5456 114.7029 58.0624	118.7354 58.6684 112.8406 56.6063	110.1883 52.8818 104.9980 51.5736
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB	129.0438 65.3693 122.4647 62.4320 116.0865	126.9825 63.2806 120.4837 60.6984 114.3102	124.2707 62.3413 117.8922 59.9863 112.0312	120.7867 60.5456 114.7029 58.0624 109.0157	118.7354 58.6684 112.8406 56.6063 107.4087	110.1883 52.8818 104.9980 51.5736 99.9732
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517	124.2707 62.3413 117.8922 59.9863 112.0312	120.7867 60.5456 114.7029 58.0624 109.0157	118.7354 58.6684 112.8406 56.6063 107.4087	110.1883 52.8818 104.9980 51.5736 99.9732
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 % Errors 4.81	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz 15k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 % Errors 4.81 4.19	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz 15k,30Hz 25k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 Errors 4.81 4.19 3.67	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834 0.85 1.88 0.59	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz 25k,30Hz 25k,30Hz 25k,30Hz 20k,20Hz 20k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 % Errors 4.81 4.19 3.67 3.11	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340 1.71 1.92 1.43 0.84	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834 0.85 1.88 0.59 1.19	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 25k,20Hz 25k,30Hz 25k,30Hz 25k,30Hz 20k,30Hz 25k,30Hz 25k,30Hz 20k,20Hz 20k,20Hz 20k,20Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698 4.13 3.58 3.32 3.20 2.39	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936 4.93 5.26 3.96 4.45 3.19	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 * Errors 4.81 4.19 3.67 3.11 3.70	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340 1.71 1.92 1.43 0.84 0.80	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834 0.85 1.88 0.59 1.19 0.35	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200 1.41 0.31 0.08 0.45 0.58
15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz Model LB 15k,20Hz 15k,30Hz 20k,20Hz 20k,30Hz 25k,20Hz 25k,30Hz 25k,30Hz 25k,30Hz 25k,30Hz 20k,20Hz 20k,30Hz	129.0438 65.3693 122.4647 62.4320 116.0865 Actual 65.7241 124.5848 63.2717 118.6726 60.9737 113.4698	126.9825 63.2806 120.4837 60.6984 114.3102 Slopes 63.2517 120.6344 60.8687 115.3461 58.8222 110.4936	124.2707 62.3413 117.8922 59.9863 112.0312 62.1980 119.2762 60.1370 114.3391 57.8487 109.4355 % Errors 4.81 4.19 3.67 3.11	120.7867 60.5456 114.7029 58.0624 109.0157 62.0840 118.5159 59.6891 113.7523 57.6041 109.0340 1.71 1.92 1.43 0.84	118.7354 58.6684 112.8406 56.6063 107.4087 60.5798 116.5450 58.3248 111.5107 56.4100 106.8834 0.85 1.88 0.59 1.19	110.1883 52.8818 104.9980 51.5736 99.9732 54.3977 109.8431 52.8371 105.4689 51.2740 101.3200

Table 16 - Application of Scaling Rule, Eq. (20): Model F

Model F -- Predicted Slopes for Model SF

	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	49.2863	48.9922	48.2653	46.9601	46.2125	41.9609
15k,30Hz	95.6891	93.9205	91.8438	89.2555	87.6231	82.4402
20k,20Hz	47.4048	47.1287	46.5141	45.2558	44.3961	40.5018
20k,30Hz	92.1399	89.9029	87.7985	84.9328	82.9238	79.2553
25k,20Hz	45.5993	45.3572	44.9664	43.6674	42.8653	39.0942
	88.3474	86.2117	84.2921	81.5438	79.5988	76.2599
25k,30Hz	00.34/4	00.211/	04.2321	61.5436	79.5966	70.2399
Model SF	Actual	Slopes				
15k,20Hz	53.3841	51.5583	50.1987	48.2431	47.7424	41.5189
15k,30Hz	100.0835	96.3716	94.8199	91.5796	92.5901	81.1789
20k,20Hz	50.8026	49.1736	47.8806	46.0006	45.5712	39.6418
20k,30Hz	94.8140	91.3715	89.5969	86.7631	88.0611	77.1814
25k,20Hz	48.4111	47.0004	45.7166	44.0171	43.6058	38.2396
25k, 30Hz	90.0473	86.7471	85.1779	82.4775	83.7859	73.3774
25K, 30HZ	90.0473	66.7471	65.1779	02.4775	63.7659	13.3/14
			% Errors			
15k,20Hz	7.68	4.98	3.85	2.66	3.20	1.06
15k,30Hz	4.39	2.54	3.14	2.54	5.36	1.55
20k,20Hz	6.69	4.16	2.85	1.62	2.58	2.17
20k, 30Hz	2.82	1.61	2.01	2.11	5.83	2.69
		3.50	1.64	0.79	1.70	2.23
25k,20Hz	5.81					
25k,30Hz	1.89	0.62	1.04	1.13	5.00	3.93
Model F	Predict	ed Clane	e for Mode	בו וב		
MOGET F	Fredict	ed Slope:	s for Mode	21 LF		
	600#	900#	1160#	1450#	1740#	3625#
15k,20Hz	82.6656	82.1724	80.9531	78.7640	77.5100	70.3791
15k,30Hz	160.4950	157.5286	154.0454	149.7041	146.9662	138.2731
20k,20Hz	79.5098	79.0467	78.0159	75.9054	74.4636	67.9318
	154.5420	150.7899	147.2604	142.4538	139.0842	132.9313
20k,30Hz						
25k,20Hz	76.4815	76.0755	75.4201	73.2414	71.8960	65.5709
25k,30Hz	148.1810	144.5989	141.3792	136.7696	133.5074	127.9073
Model IF	Actual	Slopes				
Model Lr	Accuai	STOPES				
15k,20Hz	75.4718	75.1549	72.1943	73.6001	72.0289	67.0830
15k,30Hz	148.7206	144.3879	141.1981	139.4032	138.2484	129.5165
20k,20Hz	73.2373	73.0159	70.0840	71.5287	69.9180	65.2167
•				134.8502		
20k,30Hz	143.6918	139.0496	136.6954		133.8238	125.0736
25k,20Hz	71.2348	70.9547	68.0336	69.5293	67.9277	63.4332
25k,30Hz	138.8957	134.9244	132.9889	131.2271	129.6827	121.3504
			% Errors			
16৮ ኃላህ-	0 52	0.24	12.13	7 02	7 61	4 01
15k,20Hz	9.53	9.34		7.02	7.61	4.91
15k,30Hz	7.92	9.10	9.10	7.39	6.31	6.76
20k,20Hz	8.56	8.26	11.32	6.12	6.50	4.16
20k,30Hz	7.55	8.44	7.73	5.64	3.93	6.28
25k,20Hz	7.37	7.22	10.86	5.34	5.84	3.37
25k,30Hz	6.69	7.17	6.31	4.22	2.95	5.40
					_	

Model B with internal SDOF equipmment

Section

Figure 1A

Model F with internal SDOF equipmment

Section

Figure 1B

Figure 2

Figure 8

Figure 9

Figure 11

Figure 13

Figure 14

Figure 15

Figure 16

APPENDIX A - Summary of data for Model B

Table A1: Model B

15 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	•••		6.5073		6.0219	5.4830
0.30				13.5847	13.2670	12.6493
0.45			23.0325	22.3908	22.2268	18.9597
0.60			32.1668			27.3157
0.75			42.7179			36.0714
0.75	42.7003	42.0500	42.717	41.4207	3314703	30.0714
slope	56.7364	55.0201	54.0409	52.3485	50.6482	45.7309
15 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15		13.04272		12.45935		10.8451
0.30		30.17431		27.8618		24.4456
0.45		48.43918		45.67122		38.8641
0.60		62.73582	_	58.72572		54.7966
0.75		79.75784		77.19367		71.6140
0.75	,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , , , , , , , , , , , , , , , ,	, 2, 02, 10
slope	106.9744	105.2656	103.0176	100.1294	98.4290	91.3436
20 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	•	6.2860	**	••	5.7879	
0.30			13.6857	13.2914	12.9770	12.0856
0.45						
0.60			22.0331	21.8526	21.3429	18.5255
	33.9585		22.0331 30.6274	21.8526 29.6580	21.3429	18.5255 26.1935
0.75		31.7868	30.6274	29.6580	29.3813	26.1935
0.75						
0.75 slope		31.7868 40.5836	30.6274 40.8301	29.6580 39.4717	29.3813 37.5882	26.1935
	40.7400 54.1896	31.7868 40.5836	30.6274 40.8301	29.6580 39.4717	29.3813 37.5882	26.1935 34.3608
slope 20 kip,	40.7400 54.1896 30 Hz	31.7868 40.5836 52.4582	30.6274 40.8301 51.6795	29.6580 39.4717 50.1909	29.3813 37.5882 48.6348	26.1935 34.3608 43.8378
slope 20 kip, SF	40.7400 54.1896 30 Hz 600#	31.7868 40.5836 52.4582 900#	30.6274 40.8301 51.6795	29.6580 39.4717 50.1909	29.3813 37.5882 48.6348	26.1935 34.3608 43.8378
slope 20 kip, SF 0.15	40.7400 54.1896 30 Hz 600# 12.7695	31.7868 40.5836 52.4582 900# 12.40776	30.6274 40.8301 51.6795 1160# 12.2366	29.6580 39.4717 50.1909 1450# 11.84915	29.3813 37.5882 48.6348 1740# 11.5385	26.1935 34.3608 43.8378 3625# 10.7133
slope 20 kip, SF 0.15 0.30	40.7400 54.1896 30 Hz 600# 12.7695 30.7301	31.7868 40.5836 52.4582 900# 12.40776 28.71582	30.6274 40.8301 51.6795 1160# 12.2366 27.2771	29.6580 39.4717 50.1909 1450# 11.84915 26.49537	29.3813 37.5882 48.6348 1740# 11.5385 25.8732	26.1935 34.3608 43.8378 3625# 10.7133 23.2793
slope 20 kip, SF 0.15 0.30 0.45	40.7400 54.1896 30 Hz 600# 12.7695 30.7301 44.3716	31.7868 40.5836 52.4582 900# 12.40776 28.71582 46.14995	30.6274 40.8301 51.6795 1160# 12.2366 27.2771 44.7531	29.6580 39.4717 50.1909 1450# 11.84915 26.49537 43.51862	29.3813 37.5882 48.6348 1740# 11.5385 25.8732 42.4929	26.1935 34.3608 43.8378 3625# 10.7133 23.2793 36.9790
slope 20 kip, SF 0.15 0.30 0.45 0.60	40.7400 54.1896 30 Hz 600# 12.7695 30.7301 44.3716 63.0184	31.7868 40.5836 52.4582 900# 12.40776 28.71582 46.14995 59.4673	30.6274 40.8301 51.6795 1160# 12.2366 27.2771 44.7531 56.8628	29.6580 39.4717 50.1909 1450# 11.84915 26.49537 43.51862 55.85501	29.3813 37.5882 48.6348 1740# 11.5385 25.8732 42.4929 58.2238	26.1935 34.3608 43.8378 3625# 10.7133 23.2793 36.9790 52.1899
slope 20 kip, SF 0.15 0.30 0.45	40.7400 54.1896 30 Hz 600# 12.7695 30.7301 44.3716 63.0184	31.7868 40.5836 52.4582 900# 12.40776 28.71582 46.14995	30.6274 40.8301 51.6795 1160# 12.2366 27.2771 44.7531 56.8628	29.6580 39.4717 50.1909 1450# 11.84915 26.49537 43.51862	29.3813 37.5882 48.6348 1740# 11.5385 25.8732 42.4929	26.1935 34.3608 43.8378 3625# 10.7133 23.2793 36.9790

(Table Al con't.)

25 kip, 20 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	**	6.088888	6.0044	5.814763	5.6625	5.3142
0.30	14.7866	14.07268	13.3875	13.00313	12.6960	11.5630
0.45	22.4986	22.21325	21.9438	21.34868	20.8516	18.1265
0.60	32.3408	30.30576	29.1889	28.28132	28.5723	25.5814
0.75	38.8583	38.60455	38.9767	37.62002	35.8472	33.5140
_						
slope	51.7547	50.3176	49.7273	48.1324	46.9253	42.7534

25 kip, 30 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	12.1729	11.84982	11.6715	11.29958	11.0003	10.1368
0.30	29.2534	27.31395	26.0330	25.27986	24.6671	22.1540
0.45	42.1999	43.94956	42.6144	41.44941	40.4741	35.2021
0.60	59.7403	56.41921	54.0933	53.16018	55.4650	49.6744
0.75	71.5365	71.55432	71.6469	69.34348	66.1916	64.9949
lope	96.2331	94.7606	92.8713	90.3716	89.0394	82.8755

Table A2: Model SB, L = 26/33

15 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	5.7544	5.3222		4.9969		5.4839
0.30	12.5790	11.6922	11.2934	10.6563	10.7547	10.1035
0.45	20.1300	19.3568	18.6473	17.6826	16.8739	16.8045
	27.9911	26.4617	26.1423	25.1752	24.4275	25.4058
0.75	37.6497	34.4006	33.1307	32.7355	31.8271	31.1677
01.0						
Slope	47.4564	44.1972	42.8883	41.6649	40.4632	40.4322
15 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	11.2004	10.5625	10.1647	9.8528	9.8175	10.2023
0.30	25.3168	23.5407	22.7421	21.4188	20.8846	19.8712
	40.6737	38.6136	37.3182	35.5406	33.9987	30.2060
0.60	51.7697	49.6376	51.5419	50.0055	48.7495	42.2816
0.75	69.4622	63.3050	61.4267	64.1872	62.6079	55.3543
Slope	89.4842	83.4618	82.5339	82.4570	80.1964	71.0861
20 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	5.4390	5.1015	4.9095	4.7583	4.7204	5.2999
0.30	12.2159	11.3728	10.9855	10.3562	10.1339	9.8615
0.45	19.6587	18.6765	18.0565	17.1611	16.4127	15.3153
	26.3127	24.9231	24.9421	24.2065	23.6039	23.1585
0.75	35.4214	32.3349	31.1680	31.0751	30.3182	28.8382
Slope	44.9945	41.8477	40.8071	39.8977	38.8161	37.3083
20 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	10.5323	9.9255	9.5483	9.2676	9.2013	9.5417
0.30	23.7691	22.1363	21.3677	20.1369	19.6235	19.0098
0.45	38.2421	36.3099	35.0942	33.3893	31.9241	27.9010
0.60	48.5310	46.6343	48.4775	47.0355	45.8562	39.6962
0.75	64.8686	59.2911	57.5041	60.3787	58.8965	52.0300
Slope	83.7895	78.3176	77.4541	77.5448	75.4095	66.6908

(Table A2 con't.)

25 kip, 20 Hz

• •						
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	5.2615	4.9619	4.7751	4.6512	4.7423	5.0706
0.30	11.8851	11.0605	10.6842	10.0691	9.8126	9.5522
0.45	19.0827	18.1308	17.5298	16.6756	15.9658	14.3321
0.60	24.7777	23.4598	24.2160	23.5028	22.9184	21.4100
0.75	33.3947	30.4572	29.5379	30.1724	29.4386	26.6359
Slope	42.7108	39.7092	39.1862	38.7502	37.7129	34.6656
25 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	9.9355	9.3626	9.0063	8.7430	8.9327	8.9268
0.30	22.3873	20.8766	20.1529	18.9787	18.5059	17.6046
0.45	35.9300	34.1193	32.9793	31.3896	30.1225	26.3067
0.60	45.5371	43.7792	45.5634	44.2110	43.1046	37.4275
0.75	60.6606	55.6492	53.9801	56.7573	55.3673	48.8685

Slope 78.5396 73.5559 72.7762 72.9090 70.9778 62.6799

Table A3: Model SBS, L = 26/33

7.336	kip, 25.38	85 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133		8.3384		7.8740	•••	6.9621
0.266	19.7542	18.4102	17.3855	17.2282	16.8255	16.0593
0.399	31.4406	30.2228	29.2588	28.3767	28.2289	24.0711
0.533		42.2973	40.8827	39.4521	38.7610	34.6337
0.666	54.0579	54.0560	54.1838	51.1478	50.1090	45.8412
Slope	80.9118	78.5517	77.1814	73.8698	72.5807	65.4083
7.336]	kip, 38.0	77 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133		16.5446		15.8129		
0.266				35.3331	34.5013	
		61.4413				
		79.4828				
		101.0770		95.0263	93.2678	
Slope	152.6595	150.2878	147.3027	143.9568	141.0518	130.6443
9.782 }	cip, 25.38	35 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133	7.9261	7.9733		7.5436		6.7758
0.266	19.2113	17.8771		16.8562		
0.399		28.8497		27.6963		
0.533	42.9545	40.2698	38.9253	37.5154		
0.666	51.5710	51.4290	51.7753	48.9491	47.7177	
Slope	77.2505	74.8928	73.8961	70.8851	69.6949	62.7000
9.782 }	cip, 38.07	77 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133	16.1930	15.7389	15.5281	15.0381	14.6398	13.6010
0.266	38.9844	36.4100	34.6323	33.5994	32.8109	29.5538
0.399	56.2101	58.5362	56.8486	55.1535	53.9653	46.9455
0.533	79.7174			76.0091	74.4319	66.1717
0.666	95.8745	95.7641	95.8087	90.0270	88.3712	86.6978

Slope 144.8728 142.5926 139.7395 136.7946 134.0465 124.4877

(Table A3 con't.)

12.227 kip, 25.385 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133	7.9290	7.7240	7.6205	7.3801	7.1849	6.7489
0.266	18.7595	17.8445	16.9997	16.4907	16.1013	14.6825
0.399	28.5007	28.1767	27.8784	27.0579	26.4824	23.0150
0.533	40.9084	38.3942	37.1040	37.2728	36.5278	32.4392
0.666	49.1857	48.9437	49.4338	46.6100	45.5077	42.5948
Slope	73.8018	71.8525	71.1154	68.7721	67.2440	61.1555

12.227 kip, 38.077 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.133	15.4364	15.0311	14.8137	14.3407	13.9571	12.8735
0.266	37.1109	34.6323	33.0588	32.0582	31.2815	28.1306
0.399	53.4589	55.7450	54.1422	52.5309	51.4013	44.6979
0.533	75.5702	71.4788	68.7602	72.3995	70.9050	62.9942
0.666	90.6916	90.6780	90.8724	85.6388	84.0287	82.6097

Slope 137.3274 135.2861 132.8187 130.2371 127.5945 118.5527

Table A4: Model LB, L = 40/33

15 kip,	, 20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	7.8652	7.1372			7.2587	••
0.30	18.3599		16.9434			
0.45	29.3486	27.7562	26.8526	26.5486		
0.60	39.5618	39.6630		36.8727		
0.75	50.2692	47.5761	47.9788	49.1088		
0.75	30.2032	47.5701	47.5700	43.1000	47.5007	42.3330
Slope	65.7241	63.2517	62.1980	62.0840	60.5798	54.3977
15 kip	, 30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	16.2289			14.5515		
0.30	37.6504	35.8033		33.7907	32.4174	28.5887
0.45	56.7372	52.7551		53.3343		
	73.7602		71.9683			
	94.2085	89.8657	91.4331	91.7504	90.2286	85.7571
-						
Slope	124.5848	120.6344	119.2762	118.5159	116.5450	109.8431
20 kip,	, 20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	7.7188					
0.30	17.8723	17.0109	16.5030	15.7050		13.5676
0.45	28.2290	26.6363	25.7713			
0.60	38.0971	38.1098	36.4408			
0.75	48.2906	45.7589	46.6276	47.1912		41.5912
Slope	63.2717	60.8687	60.1370	59.6891	58.3248	52.8371
20 kip,	, 30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	15.8994		13.9559	13.9566	13.9182	12.5287
0.30	36.1511	34.3790	33.9667	32.4383		27.4163
0.45						
	54.3044	50.4684	49.5844	52.1615	51.0356	44./343
0.60	54.3044 69.4057	50.4684 71.9427		52.1615 66.1871		44.7343 64.1960
0.60 0.75	54.3044 69.4057 90.0624	50.4684 71.9427 85.8354		52.1615 66.1871 87.6780	64.9537	
	69.4057	71.9427	68.8571	66.1871	64.9537	64.1960

(Table A4 con't.)

25 kip, 20 Hz

SF 0.15 0.30 0.45 0.60	600# 7.5746 17.5240 27.1452 36.6809	900# 6.8697 16.6800 25.5805 37.0750 44.0024	1160# 6.7812 16.1826 24.7637 35.0054 44.7585	1450# 6.7807 15.4204 24.8811 33.9879 45.4035	1740# 6.7582 15.1002 24.3267 33.3100 44.4409	3625# 6.0833 13.3222 21.6986 31.2241 40.0582
0.75 Slope	46.4503 60.9737	58.8222	57.8487	45.4035 57.6041	56.4100	51.2740

25 kip, 30 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	15.2917	13.9333	13.4194	13.4233	13.3656	12.0375
0.30	34.7005	33.5826	32.6185	31.1294	29.8760	26.3250
0.45	51.9566	48.4259	47.5914	50.1066	49.0272	42.9198
0.60	66.3015	68.8546	65.8545	63.4690	62.2544	61.6865
0.75	86.0716	81.9556	83.5989	83.9305	82.5143	79.1394

Slope 113.4698 110.4936 109.4355 109.0340 106.8834 101.3200

Table A5: Model LBS, L = 40/33

26.713 kip, 16.500 Hz 1068.54# 1602.80# 2065.84# 2582.30# 3098.76# 6455.74# SF 5.3705 5.1182 4.9654 4.5239 0.165 5.2755 5.4179 11.5374 10.9438 0.330 12.8327 11.9732 11.1952 10.4339 19.6440 19.0151 18.4534 18.3300 15.6391 0.495 20.4460 26.5580 29.3525 27.5156 25.6003 25.1953 22.5298 0.661 33.2861 0.826 35.1074 35.1294 35.2721 32.5593 29.7700 42.4081 41.1729 40.5210 38.7174 38.0260 34.2675 Slope 26.713 kip, 24.750 Hz 1068.54# 1602.80# 2065.84# 2582.30# 3098.76# 6455.74# SF 10.7580 10.6152 10.2785 10.0047 0.165 11.0440 8.9480 0.330 26.1294 24.8822 23.6604 22.9614 22.4416 20.1642 38.5108 39.9348 38.7760 37.6406 36.7748 0.495 32.0579 49.5454 0.661 54.7139 51.7047 48.4202 50.7676 45.1958 0.826 65.8256 65.6865 65.8254 61.8407 60.6034 59.1028 78.7736 77.2320 73.9772 73.9001 Slope 80.0119 68.4459 35.618 kip, 16.500 Hz SF 1068.54# 1602.80# 2065.84# 2582.30# 3098.76# 6455.74# 0.165 5.1848 5.1358 4.9032 4.7726 5.2768 4.4116 10.7045 0.330 12.4797 11.6257 11.2881 10.9536 9.9690 19.4549 18.7506 18.1895 18.0100 17.6009 0.495 15.2810 0.661 27.9645 26.1974 25.2872 24.4036 24.4196 21.6040 0.826 33.4933 33.4229 33.7052 31.8562 31.0065 28.3584 Slope 40.5034 39.2558 38.7454 37.1798 36.5150 32.8497 35.618 kip, 24.750 Hz SF 1068.54# 1602.80# 2065.84# 2582.30# 3098.76# 6455.74# 0.165 10.5333 10.2342 10.0955 9.7752 9.5146 8.8397 23.6796 0.330 25.3261 22.4987 21.8354 21.3427 19.2022 36.5541 38.0477 36.9464 0.495 35.8667 35.0431 30.5030

46.9469

62.3686

46.0531

58.5890

70.2559

48.3830

57.4235

70.2320

43.0459

65.2219

56.3050

51.8955

0.826 62.2675 62.2357

49.0111

75.9329 74.7424 73.2678

0.661

Slope

(Table A5 con't.)

44.522 kip, 16.500 Hz

SF	1068.54#	1602.80#	2065.84#	2582.30#	3098.76#	6455.74#
0.165	5.1574	5.0223	4.9541	4.7970	4.6692	4.3856
0.330	12.1863	11.6046	11.0431	10.7162	10.4728	9.5396
0.495	18.5348	18.3134	18.1175	17.5950	17.1958	14.9532
0.661	26.6330	24.9773	24.1040	23.3188	23.7429	21.1012
0.826	31.9446	31.8083	32.1814	30.3344	29.5704	27.6613
Slope	38.6829	37.6626	37.2876	35.6633	35.2302	32.0390

44.522 kip, 24.750 Hz

	SF	1068.54#	1602.80#	2065.84#	2582.30#	3098.76#	6455.74#	
	0.165	10.0413	9.7741	9.6310	9.3218	9.0708	8.3669	
	0.330	24.1092	22.5238	21.4765	20.8338	20.3479	18.2777	
	0.495	34.7654	36.2339	35.1879	34.1616	33.3785	29.0426	
	0.661	49.1965	46.4991	44.6695	43.8317	46.0910	40.9795	
	0.826	58.9018	58.9312	59.1561	55.7329	54.6014	53.6507	
5	Slope	71.9790	70.9133	69.6398	66.8721	66.8517	62.1131	

APPENDIX B - Summary of data for Model F

Table B1: Model F

15 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	7.8954		7.6863		7.1291	
0.30	18.1235			15.9345		
0.45	28.8230			26.0286		
	39.3150		37.6583	36.6869		
			49.2544	47.8262		43.0371
0.75	48.0183	48.8537	49.2544	47.8262	40.0012	43.03/1
Slope	63.9955	63.6136	62.6697	60.9750	60.0043	54.4839
15 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
	15.6560		15.1687			
	36.1090					
	53.8523				52.0236	
	77.1726		70.3431		67.3839	
	93.3833		92.5846		87.0836	
0.75	33.3033	95.0017	92.5646	89.6961	67.0636	03.9013
Slope	124.2470	121.9505	119.2541	115.8933	113.7737	107.0440
20 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
	•••	7.6837		6.9690	••	••
	17.4612	16.1299	15.2183	15.3387		
	27.7596	26.5021	25.9723	25.0919		
	37.7353	37.7127	36.2894			
	46.2129	46.9098	47.4665			41.5190
Slope	61.5524	61.1939	60.3959	58.7621	57.6459	52.5893
20 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	15.0276	15.0960	14.5925	14.1371		12.2963
	34.7248	32.2892	31.9543	31.0854		27.9583
	51.7723	49.8015		49.1839		43.6672
	73.9152	69.7237		65.1656		61.5868
0.75	90.3126	91.0161	88.6260	85.0584		80.6869
Slope	119.6385	116.7338	114.0015	110.2804	107.6719	102.9086

(Table B1 con't.)

25 kip, 20 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	7.3201	7.4187	7.1653	6.8329	6.6597	5.9444
0.30	16.8233	15.6359	15.4732	15.0464	14.7190	14.3061
0.45	26.7302	25.5608	25.0337	24.1837	24.5306	21.1075
0.60	36.2431	36.3354	34.9587	34.0550	33.2822	30.1752
0.75	44.4674	45.0318	45.7280	44.4152	43.2724	40.0407
Slope	59.2081	58.8937	58.3864	56.6997	55.6582	50.7616

25 kip, 30 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	14.4484	14.5159	14.0275	13.5944	13.2726	11.8306
0.30	33.3854	31.0204	30.7098	29.8691	29.2302	26.9124
0.45	49.7593	47.8747	48.6845	47.3078	48.2118	41.9781
0.60	70.8399	66.8726	64.1160	62.6621	60.7416	59.2508
0.75	86.5070	87.1686	84.9972	81.5211	78.6681	77.6632

Slope 114.7141 111.9411 109.4486 105.8800 103.3546 99.0193

Table B2: Model SF, L = 30.83/40.3

15 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	6.7036	6.1083	5.8491	5.6251	5.4168	5.4677
0.30	14.1910	13.3732	13.8194	13.3730	13.3716	
0.45	23.3392	22.7161	21.4325	20.2020	19.7089	
	32.7401	30.6351	30.6198	29.6457	28.9377	
0.75	40.8710	40.3625	38.7749	37.2891	37.3676	31.8318
Slope	53.3841	51.5583	50.1987	48.2431	47.7424	41.5189
15 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	13.0259		11.8366	11.4366	11.1144	
	28.3981	26.9607	26.3061	25.4951	25.0667	
	42.9678	44.3760	42.0687	40.0356	39.0370	
0.60	60.4568	56.3495	59.2834		56.1786	48.6454
0.75	77.0273	74.0650	70.8951	68.5409	72.1590	62.5531
Slope	100.0835	96.3716	94.8199	91.5796	92.5901	81.1789
20 kip,	20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	6.4078	5.8592	5.6424	5.4517		5.4087
0.30	13.5565	12.8672	13.1863	12.7601	12.8070	11.0815
0.45	22.2844	21.6649	20.4299	19.2411	18.7725	18.2693
	31.1955	29.1849	29.2146	28.2831	27.6094	23.2502
0.75	38.7931	38.4709	36.9704	35.5355	35.6591	30.3330
Slope	50.8026	49.1736	47.8806	46.0006	45.5712	39.6418
20 kip,	30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	12.3834	11.6874	11.2515	10.8712	10.5648	9.7370
0.30	26.9640	25.6038	25.0068	24.2375	23.8617	21.3389
0.45	40.7873	42.2337	40.0045	38.0391	37.0928	34.0171
0.60	57.2034	53.4301	56.4321	54.7894	53.4416	46.2398
0.75	72.9456	70.0998	66.4336	64.6349	68.6343	59.4643
Slope	94.8140	91.3715	89.5969	86.7631	88.0611	77.1814

(Table B2 con't.)

25 kip, 20 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	6.1230	5.7308	5.5185	5.3320	5.1818	5.2559
0.30	13.2529	12.5800	12.5779	12.1711	12.2660	10.6092
0.45	21.2747	20.7499	19.6099	18.6721	18.2053	17.4971
0.60	29.7142	27.8322	27.8642	26.9737	26.3328	22.6783
0.75	36.8164	36.6568	35.2402	33.9111	34.0174	29.1596
Slone	AR A111	47 0004	45 7166	44.0171	43.6058	38.2396

25 kip, 30 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	11.7821	11.1105	10.7375	10.3703	10.0751	9.3367
0.30	25.6789	24.3529	23.7615	23.0322	22.7069	20.3048
0.45	38.7383	40.1803	38.0261	36.1258	35.2294	32.3871
0.60	54.2978	50.7543	53.6991	52.1402	50.8604	43.9341
0.75	69.2689	66.4579	63.1166	61.4134	65.3230	56.5039
Slone	90.0473	86.7471	85.1779	82.4775	83.7859	73.3774

Table B3: Model SFS, L = 30.83/40.3

6.715 kip, 26.144 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.131	10.3222	10.3997	10.0491	9.4264	9.2149	8.0442
0.262	23.6627	21.8896	21.4968	20.8213	20.3768	19.9950
0.394	37.7207	35.9516	35.1976	34.0330	34.4967	29.5653
0.525	51.3854	51.1835	49.2466	47.9765	47.0495	42.3936
0.656	62.6362	63.7853	64.3790	62.5644	60.8813	56.2653
Slone	95 5560	95.0241	93.8909	91.1718	89.5320	81.4344

6.715 kip, 39.216 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.131	20.4780	20.5245	19.8405	19.2249	18.7303	16.7214
0.262	47.1614	43.9264	43.5033	42.2808	41.3490	38.1384
0.394	70.4125	67.7339	68.7857	66.9084	68.0417	59.3429
0.525	100.8662	95.6752	91.9558	89.8175	88.6724	83.5612
0.656	121.7879	124.0390	121.0514	117.2878	113.7914	109.8237

Slope 185.4826 182.1611 178.2545 173.2567 170.3437 159.9764

8.954 kip, 26.144 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.131	9.9367	10.0427	9.7042	9.1726	8.9069	7.9082
0.262	22.7980	21.0776	20.6947	20.0429	19.6156	19.3409
0.394	36.3306	34.6167	33.9377	32.8084	33.2640	28.4770
0.525	49.3212	49.3236	47.4564	46.2280	45.3635	40.8715
0.656	60.2813	61.2480	62.0425	60.2992	58.6857	54.2806
Slope	91.9091	91.4055	90.4857	87 8731	86.3100	78 5630

8.954 kip, 39.216 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.131	19.6568	19.7413	19.0840	18.4919	18.0143	16.0817
0.262	45.3552	42.2141	41.8117	40.6399	39.7489	36.5678
0.394	67.6950	65.0702	66.1723	64.3206	65.4800	57.0734
0.525	96.6126	91.2063	87.2316	85.2227	83.1333	80.4251
0.656	117.7894	118.8399	115.8756	111.2264	106.9383	105.4703
Slope	178.6100	174.3909	170.3892	164.8775	160.9170	153.7541

(Table B3 con't.)

11.192 kip, 26.144 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.131	9.5654	9.7615	9.3692	8.9370	8.7080	7.7743
0.262	21.9806	20.4401	20.2398	19.6692	19.2332	18.7055
0.394	34.9853	33.3847	32.7165	31.6213	32.0686	27.5871
0.525	47.3478	47.5230	45.7235	44.5355	43.7952	39.5882
0.656	58.0059	58.7972	59.7802	58.1062	56.5604	52.3562
Slope	88.4012	87.9814	87.2773	84.7855	83.3375	75.9534

11.192 kip, 39.216 Hz

```
SF
       293.45#
                         567.33#
                                  709.16#
                440.17#
                                           851.00# 1772.91#
0.131
       18.8930
                18.9836
                         18.3522
                                  17.7829
                                           17.3496
                                                     15.4687
                40.5576
0.262
       43.6080
                         40.1750
                                  39.0522
                                            38.2006
                                                     35.2067
                                            63.0345
0.394
       65.0660
                62.5555
                         63.6493
                                  61.8704
                                                     54.8774
0.525
       92.5754
                87.4555
                         83.8766
                                  81.9524
                                            79.9470
                                                     77.3902
0.656 112.8317 113.8229 111.1283 106.6070 102.8457 101.5663
```

Slope 171.2538 167.2259 163.6361 158.3070 154.7770 147.9915

Table B4: Model LF, L = 52.4/40.3

15 kip	, 20 Hz					٠
SF	600#	900#	1160#	1450#	1740#	3625#
0.15	9.2239	**	9.4559		8.9177	
0.30	21.4240		20.5218	19.4841	18.4337	
0.45		33.7701	32.6639			
	45.0052			45.1511		
0.75			54.1819	56.6683		
Slope	75.4718	75.1549	72.1943	73.6001	72.0289	67.0830
15 kip	, 30 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
0.15						
0.30			41.4495			
0.45			61.8317			
	87.5063		85.4399			
		109.8272				98.0492
Slope	148.7206	144.3879	141.1981	139.4032	138.2484	129.5165
20 kip	, 20 Hz					
SF	600#	900#	1160#	1450#	1740#	3625#
SF 0.15	600# 9.0949	900# 8.8322	1160# 9.2026	1450# 8.9401		
0.15	9.0949	8.8322	9.2026	8.9401	8.6773	7.6410
0.15 0.30		8.8322		•••	8.6773 17.8987	7.6410 18.1445
0.15	9.0949 20.7934 32.5649	8.8322 20.4675	9.2026 19.9360	8.9401 18.9217	8.6773 17.8987 30.7248	7.6410 18.1445 27.7834
0.15 0.30 0.45	9.0949 20.7934 32.5649 43.7032	8.8322 20.4675 32.7974	9.2026 19.9360 31.7235	8.9401 18.9217 30.8064	8.6773 17.8987 30.7248	7.6410 18.1445 27.7834
0.15 0.30 0.45 0.60	9.0949 20.7934 32.5649 43.7032	8.8322 20.4675 32.7974 44.6428	9.2026 19.9360 31.7235 42.7540	8.9401 18.9217 30.8064 43.8698	8.6773 17.8987 30.7248 43.1467	7.6410 18.1445 27.7834 39.1307
0.15 0.30 0.45 0.60 0.75	9.0949 20.7934 32.5649 43.7032 56.2038	8.8322 20.4675 32.7974 44.6428 55.1300	9.2026 19.9360 31.7235 42.7540 52.5864	8.9401 18.9217 30.8064 43.8698 55.0861	8.6773 17.8987 30.7248 43.1467 53.5176	7.6410 18.1445 27.7834 39.1307 50.8470
0.15 0.30 0.45 0.60 0.75	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373	8.8322 20.4675 32.7974 44.6428 55.1300	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840	8.9401 18.9217 30.8064 43.8698 55.0861	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180	7.6410 18.1445 27.7834 39.1307 50.8470
0.15 0.30 0.45 0.60 0.75 Slope	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373	8.8322 20.4675 32.7974 44.6428 55.1300 73.0159	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840	8.9401 18.9217 30.8064 43.8698 55.0861 71.5287	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180	7.6410 18.1445 27.7834 39.1307 50.8470 65.2167
0.15 0.30 0.45 0.60 0.75 Slope	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373 , 30 Hz 600# 18.6073 40.3066	8.8322 20.4675 32.7974 44.6428 55.1300 73.0159 900# 17.8757 41.4119	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840	8.9401 18.9217 30.8064 43.8698 55.0861 71.5287	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180	7.6410 18.1445 27.7834 39.1307 50.8470 65.2167
0.15 0.30 0.45 0.60 0.75 Slope 20 kip SF 0.15 0.30 0.45	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373 , 30 Hz 600# 18.6073 40.3066 65.8022	8.8322 20.4675 32.7974 44.6428 55.1300 73.0159 900# 17.8757 41.4119 62.2919	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840 1160# 18.2821 40.2172 59.9808	8.9401 18.9217 30.8064 43.8698 55.0861 71.5287	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180 1740# 17.3811 36.6008	7.6410 18.1445 27.7834 39.1307 50.8470 65.2167
0.15 0.30 0.45 0.60 0.75 Slope 20 kip SF 0.15 0.30 0.45 0.60	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373 , 30 Hz 600# 18.6073 40.3066 65.8022 84.5752	8.8322 20.4675 32.7974 44.6428 55.1300 73.0159 900# 17.8757 41.4119 62.2919 82.3509	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840 1160# 18.2821 40.2172 59.9808 82.6925	8.9401 18.9217 30.8064 43.8698 55.0861 71.5287 1450# 17.7881 38.2717 58.7740 82.2772	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180 1740# 17.3811 36.6008 58.0124 80.9244	7.6410 18.1445 27.7834 39.1307 50.8470 65.2167 3625# 15.6758 35.1924 56.3481 76.4148
0.15 0.30 0.45 0.60 0.75 Slope 20 kip SF 0.15 0.30 0.45 0.60	9.0949 20.7934 32.5649 43.7032 56.2038 73.2373 , 30 Hz 600# 18.6073 40.3066 65.8022 84.5752	8.8322 20.4675 32.7974 44.6428 55.1300 73.0159 900# 17.8757 41.4119 62.2919	9.2026 19.9360 31.7235 42.7540 52.5864 70.0840 1160# 18.2821 40.2172 59.9808 82.6925	8.9401 18.9217 30.8064 43.8698 55.0861 71.5287 1450# 17.7881 38.2717 58.7740 82.2772	8.6773 17.8987 30.7248 43.1467 53.5176 69.9180 1740# 17.3811 36.6008 58.0124 80.9244	7.6410 18.1445 27.7834 39.1307 50.8470 65.2167 3625# 15.6758 35.1924 56.3481

(Table B4 con't.)

25 kip, 20 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	8.9674	8.6336	8.9548	8.6992	8.4421	7.5405
0.30	20.2044	19.9502	19.3947	18.4335	17.6556	17.6412
0.45	32.0254	31.8485	30.8062	29.9518	29.8833	27.0934
0.60	42.4342	43.3981	41.4893	42.6195	41.9190	38.0458
0.75	54.4996	53.5409	51.0314	53.5435	51.8650	49.4075
Slope	71 2348	70 9547	68 0336	69.5293	67 9277	63.4332

25 kip, 30 Hz

SF	600#	900#	1160#	1450#	1740#	3625#
0.15	18.0694	17.3472	17.7345	17.2560	16.8616	15.2157
0.30	39.0750	40.1729	39.0156	37.1058	35.4643	34.1465
0.45	63.7658	60.3919	58.1760	57.0104	56.2814	54.6865
0.60	81.7877	80.3558	80.2083	79.6055	78.3021	74.1707
0.75	106.2445	102.5669	101.2063	100.3405	100.0079	91.3780

Slope 138.8957 134.9244 132.9889 131.2271 129.6827 121.3504

Table B5: Model LFS, L = 52.4/40.3

32.955	kip, 15.3	85 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
	6.0752		5.9149	5.5470	5.4214	
	13.9513	12.8890	12.6474			11.7678
	22.1795		20.7411		20.3099	
	30.2228		29.0076		27.7363	
	36.8944	37.5805	37.9187	36.8121	35.8450	
0.655	30.0344	37.9809	37.9107	30.0121	33.6430	33.1100
Slope	43.1493	42.9191	42.4239	41.1542	40.4546	36.7769
32.955	kip, 23.0	77 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
	12.0537	12.0836	11.6794	11.3142	11.0211	
	27.8062	25.8666	25.5971	24.8969		22.4446
	41.4055		40.5371			34.9664
	59.3278		54.1596			49.2082
	71.7365	73.0804	71.3011	69.0047		64.6347
0.033	71.7505	73.0004	71.5011	09.0047	00.5554	04.0347
ŝlope	83.7596	82.2760	80.5439	78.2035	76.9664	72.2526
43.490	kip, 15.3	85 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.171	5.8484	5.9120	5.7120	5.3977	5.2402	4.6550
0.342	13.4415	12.4109	12.1755	11.8014	11.5574	
	21.3622	20.3784	19.9987	19.3093	19.5842	
	29.0088		27.9532	27.1956	26.7412	
0.855	35.5080	36.0857	36.5426	35.4795	34.5524	
Slope	41.5029	41.2848	40.8854	39.6653	38.9983	35.4802
43.490	kip, 23.0	77 Hz				
SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.171	11.5704	11.6225	11.2341	10.8829	10.5998	9.4661
0.342	26.7415	24.8584	24.6019	23.9308	23.4205	21.5235
0.513	39.8077	38.3068	38.9954	37.8577	38.5527	33.6294
0.684	56.8262	53.6490	51.3839	50.1382	49.0081	47.3615
0.855	69.3811	70.0176	68.2512	65.4472	62.9647	62.0699
0.055	09.3011	70.0176	00.2312	05.4472	02.704/	02.0099
Slope	80.6564	78.7700	76.9917	74.4286	72.7116	69.4417

(Table B5 con't.)

54.925 kip, 15.385 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.171	5.6294	5.7464	5.5147	5.2597	5.1239	4.5762
0.342	12.9604	12.0365	11.9091	11.5823	11.3324	11.0087
0.513	20.5708	19.6519	19.2788	18.6104	18.8802	16.2552
0.684	27.8460	27.9516	26.9321	26.1995	25.8164	23.3113
0.855	34.1672	34.6413	35.2097	34.1886	33.3006	30.8101
Slope	39.9178	39.7376	39.4354	38,2714	37.6550	34.3016

54.925 kip, 23.077 Hz

SF	293.45#	440.17#	567.33#	709.16#	851.00#	1772.91#
0.171	11.1202	11.1763	10.8032	10.4655	10.2081	9.1047
0.342	25.7110	23.8826	23.6386	22.9956	22.5080	20.7221
0.513	38.2612	36.8259	37.5081	36.4151	37.1124	32.3350
0.684	54.4498	51.4408	49.4070	48.2135	47.1291	45.5738
0.855	66.4599	67.0607	65.4541	62.7282	60.5542	59.7716
Slope	77.3329	75.5321	73.9393	71.4616	69.9363	66.8381